Generating a multimodal artificial intelligence model to differentiate benign and malignant follicular neoplasms of the thyroid: A proof-of-concept study

医学 接收机工作特性 人工智能 随机森林 机器学习 朴素贝叶斯分类器 分类器(UML) 放射科 腺瘤 计算机科学 病理 内科学 支持向量机
作者
Ann Lin,Zelong Liu,Justine Lee,Gustavo Fernández-Ranvier,Aida Taye,Randall P. Owen,David S. Matteson,Denise Lee
出处
期刊:Surgery [Elsevier]
卷期号:175 (1): 121-127 被引量:2
标识
DOI:10.1016/j.surg.2023.06.053
摘要

Background Machine learning has been increasingly used to develop algorithms that can improve medical diagnostics and prognostication and has shown promise in improving the classification of thyroid ultrasound images. This proof-of-concept study aims to develop a multimodal machine-learning model to classify follicular carcinoma from adenoma. Methods This is a retrospective study of patients with follicular adenoma or carcinoma at a single institution between 2010 and 2022. Demographics, imaging, and perioperative variables were collected. The region of interest was annotated on ultrasound and used to perform radiomics analysis. Imaging features and clinical variables were then used to create a random forest classifier to predict malignancy. Leave-one-out cross-validation was conducted to evaluate classifier performance using the area under the receiver operating characteristic curve. Results Patients with follicular adenomas (n = 7) and carcinomas (n = 11) with complete imaging and perioperative data were included. A total of 910 features were extracted from each image. The t-distributed stochastic neighbor embedding method reduced the dimension to 2 primary represented components. The random forest classifier achieved an area under the receiver operating characteristic curve of 0.76 (clinical only), 0.29 (image only), and 0.79 (multimodal data). Conclusion Our multimodal machine learning model demonstrates promising results in classifying follicular carcinoma from adenoma. This approach can potentially be applied in future studies to generate models for preoperative differentiation of follicular thyroid neoplasms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助CASPERWU采纳,获得10
刚刚
栗小包子发布了新的文献求助10
1秒前
汉堡包应助didi采纳,获得10
1秒前
1秒前
叶液发布了新的文献求助10
1秒前
MOMO完成签到,获得积分10
1秒前
1秒前
香蕉觅云应助伍子丐的猫采纳,获得10
1秒前
华仔应助贤惠的豪英采纳,获得10
1秒前
ym_打工人发布了新的文献求助10
2秒前
能能鹤完成签到 ,获得积分10
2秒前
3秒前
wolvesmonlite发布了新的文献求助10
3秒前
3秒前
4秒前
漂泊发布了新的文献求助10
4秒前
5秒前
7秒前
zl发布了新的文献求助10
7秒前
7秒前
科研栾发布了新的文献求助10
7秒前
BillowHu发布了新的文献求助10
8秒前
橙子完成签到,获得积分20
8秒前
charlene完成签到,获得积分10
8秒前
8秒前
现在就去看文献完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
桐桐应助火星上的山晴采纳,获得10
10秒前
乐观发布了新的文献求助10
10秒前
didi完成签到,获得积分20
10秒前
11秒前
CASPERWU发布了新的文献求助10
11秒前
12秒前
大林完成签到,获得积分10
12秒前
12秒前
TIGun发布了新的文献求助10
13秒前
Shirley关注了科研通微信公众号
13秒前
妮子要学习完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
Time Matters: On Theory and Method 500
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3559156
求助须知:如何正确求助?哪些是违规求助? 3133718
关于积分的说明 9403929
捐赠科研通 2833973
什么是DOI,文献DOI怎么找? 1557731
邀请新用户注册赠送积分活动 727632
科研通“疑难数据库(出版商)”最低求助积分说明 716383