Generating a multimodal artificial intelligence model to differentiate benign and malignant follicular neoplasms of the thyroid: A proof-of-concept study

医学 接收机工作特性 人工智能 随机森林 机器学习 朴素贝叶斯分类器 分类器(UML) 放射科 腺瘤 计算机科学 病理 内科学 支持向量机
作者
Ann Lin,Zelong Liu,Justine Lee,Gustavo Fernandez‐Ranvier,Aida Taye,Randall P. Owen,David S. Matteson,Denise Lee
出处
期刊:Surgery [Elsevier]
卷期号:175 (1): 121-127 被引量:15
标识
DOI:10.1016/j.surg.2023.06.053
摘要

Background Machine learning has been increasingly used to develop algorithms that can improve medical diagnostics and prognostication and has shown promise in improving the classification of thyroid ultrasound images. This proof-of-concept study aims to develop a multimodal machine-learning model to classify follicular carcinoma from adenoma. Methods This is a retrospective study of patients with follicular adenoma or carcinoma at a single institution between 2010 and 2022. Demographics, imaging, and perioperative variables were collected. The region of interest was annotated on ultrasound and used to perform radiomics analysis. Imaging features and clinical variables were then used to create a random forest classifier to predict malignancy. Leave-one-out cross-validation was conducted to evaluate classifier performance using the area under the receiver operating characteristic curve. Results Patients with follicular adenomas (n = 7) and carcinomas (n = 11) with complete imaging and perioperative data were included. A total of 910 features were extracted from each image. The t-distributed stochastic neighbor embedding method reduced the dimension to 2 primary represented components. The random forest classifier achieved an area under the receiver operating characteristic curve of 0.76 (clinical only), 0.29 (image only), and 0.79 (multimodal data). Conclusion Our multimodal machine learning model demonstrates promising results in classifying follicular carcinoma from adenoma. This approach can potentially be applied in future studies to generate models for preoperative differentiation of follicular thyroid neoplasms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助ebby采纳,获得10
2秒前
SyncMaster完成签到,获得积分10
2秒前
xm完成签到 ,获得积分10
3秒前
pluto应助无奈的小松鼠采纳,获得10
4秒前
顾矜应助无奈的小松鼠采纳,获得10
4秒前
情怀应助无奈的小松鼠采纳,获得10
4秒前
bkagyin应助无奈的小松鼠采纳,获得10
4秒前
pluto应助无奈的小松鼠采纳,获得10
4秒前
pluto应助无奈的小松鼠采纳,获得10
4秒前
4秒前
华仔应助无奈的小松鼠采纳,获得10
4秒前
JamesPei应助无奈的小松鼠采纳,获得10
4秒前
打打应助无奈的小松鼠采纳,获得10
4秒前
RSC完成签到,获得积分10
5秒前
5秒前
Akim应助momo采纳,获得10
6秒前
6秒前
7秒前
所所应助cheese采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
10秒前
zh完成签到,获得积分10
11秒前
12秒前
老迟到的小蘑菇完成签到,获得积分10
12秒前
12秒前
丘比特应助侦察兵采纳,获得10
13秒前
yicheng完成签到,获得积分10
13秒前
Zeeia完成签到,获得积分10
13秒前
icey发布了新的文献求助10
14秒前
14秒前
懵懂的明辉完成签到,获得积分10
16秒前
16秒前
17秒前
天气晴朗发布了新的文献求助10
18秒前
momo完成签到,获得积分10
18秒前
18秒前
19秒前
19秒前
峇蘭完成签到 ,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424345
求助须知:如何正确求助?哪些是违规求助? 4538767
关于积分的说明 14163720
捐赠科研通 4455670
什么是DOI,文献DOI怎么找? 2443852
邀请新用户注册赠送积分活动 1434997
关于科研通互助平台的介绍 1412337