亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Generating a multimodal artificial intelligence model to differentiate benign and malignant follicular neoplasms of the thyroid: A proof-of-concept study

医学 接收机工作特性 人工智能 随机森林 机器学习 朴素贝叶斯分类器 分类器(UML) 放射科 腺瘤 计算机科学 病理 内科学 支持向量机
作者
Ann Lin,Zelong Liu,Justine Lee,Gustavo Fernandez‐Ranvier,Aida Taye,Randall P. Owen,David S. Matteson,Denise Lee
出处
期刊:Surgery [Elsevier]
卷期号:175 (1): 121-127 被引量:15
标识
DOI:10.1016/j.surg.2023.06.053
摘要

Background Machine learning has been increasingly used to develop algorithms that can improve medical diagnostics and prognostication and has shown promise in improving the classification of thyroid ultrasound images. This proof-of-concept study aims to develop a multimodal machine-learning model to classify follicular carcinoma from adenoma. Methods This is a retrospective study of patients with follicular adenoma or carcinoma at a single institution between 2010 and 2022. Demographics, imaging, and perioperative variables were collected. The region of interest was annotated on ultrasound and used to perform radiomics analysis. Imaging features and clinical variables were then used to create a random forest classifier to predict malignancy. Leave-one-out cross-validation was conducted to evaluate classifier performance using the area under the receiver operating characteristic curve. Results Patients with follicular adenomas (n = 7) and carcinomas (n = 11) with complete imaging and perioperative data were included. A total of 910 features were extracted from each image. The t-distributed stochastic neighbor embedding method reduced the dimension to 2 primary represented components. The random forest classifier achieved an area under the receiver operating characteristic curve of 0.76 (clinical only), 0.29 (image only), and 0.79 (multimodal data). Conclusion Our multimodal machine learning model demonstrates promising results in classifying follicular carcinoma from adenoma. This approach can potentially be applied in future studies to generate models for preoperative differentiation of follicular thyroid neoplasms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
38秒前
46秒前
49秒前
1分钟前
1分钟前
1分钟前
闪明火龙果完成签到,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
今后应助rebeycca采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
AliEmbark完成签到,获得积分10
3分钟前
Hello应助科研通管家采纳,获得10
3分钟前
VDC应助科研通管家采纳,获得30
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
抹不掉的记忆完成签到,获得积分10
4分钟前
Swear完成签到 ,获得积分10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
Endless完成签到,获得积分10
4分钟前
安详的尔岚完成签到,获得积分10
4分钟前
nenoaowu发布了新的文献求助10
4分钟前
NI完成签到 ,获得积分10
4分钟前
5分钟前
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5780479
求助须知:如何正确求助?哪些是违规求助? 5656040
关于积分的说明 15453184
捐赠科研通 4911071
什么是DOI,文献DOI怎么找? 2643267
邀请新用户注册赠送积分活动 1590941
关于科研通互助平台的介绍 1545457