Unveiling the Synergistic Potential of Laser Chemical Solid‐Phase Deposition of Atomic Platinum‐Metal Layer on 2D Materials for Bifunctional Catalysts

材料科学 双功能 原子层沉积 分解水 催化作用 电催化剂 化学工程 过电位 纳米技术 析氧 双金属片 纳米复合材料 金属 图层(电子) 冶金 电化学 电极 光催化 物理化学 化学 生物化学 工程类
作者
Wendi Yi,Ruohan Yu,Haoqing Jiang,Jinsong Wu,Gary J. Cheng
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:34 (6) 被引量:2
标识
DOI:10.1002/adfm.202308575
摘要

Abstract The formation of high‐density atomic metal layers on 2D materials enhances catalytic device development by providing a large surface area, precise control over active sites, and enhanced reactivity. Here, pulsed laser‐induced chemical solid‐phase deposition (LCSD) is introduced for achieving high‐density atomic metal layers. By leveraging high‐density plasma generated via pulsed nanosecond laser irradiation of thin salt layers on 2D materials, atomic‐scale metals are deposited onto abundant nucleation sites, creating dense atomic‐metal layers. This study engineers layered double hydroxide (LDH) materials layered with atomic platinum‐based alloys, exhibiting exceptional catalytic activity for overall water splitting. LDH's excellent oxygen evolution performance combined with remarkable advances in hydrogen evolution catalysis are achieved. Introducing a second element improves Pt layer dispersion and uniformity, resulting in extraordinary Pt distribution density and minimal overpotential. The LDH and Pt‐metal combination creates powerful synergistic effects, significantly enhancing catalytic performance and enabling superior bifunctional catalysts for water splitting. LCSD effectively fabricates stable nanocomposites designed for electrocatalytic applications, leveraging unique structures of atom‐scale metal‐supported composite 2D materials, enhancing overall electrocatalytic performance. This breakthrough impacts energy conversion and environmental protection, broadening electrocatalysis and revolutionizing atom‐scale metal‐supported composite 2D materials. Its practical applications span various areas, contributing to sustainable energy solutions and environmental preservation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮雨微清完成签到,获得积分10
刚刚
刚刚
1秒前
yuyu发布了新的文献求助10
1秒前
懿范完成签到 ,获得积分10
2秒前
Helen完成签到,获得积分10
3秒前
Ayn发布了新的文献求助10
4秒前
4秒前
月儿发布了新的文献求助30
4秒前
ww关注了科研通微信公众号
4秒前
SJJ应助碎梦采纳,获得10
4秒前
5秒前
5秒前
6秒前
大郭子发布了新的文献求助10
6秒前
6秒前
6秒前
三金完成签到,获得积分10
7秒前
吴欣欣完成签到,获得积分10
8秒前
Hello应助zhihui采纳,获得10
8秒前
852应助大果粒采纳,获得10
8秒前
烂漫宝贝发布了新的文献求助10
8秒前
achaia完成签到,获得积分10
9秒前
9秒前
Spinnin完成签到,获得积分10
9秒前
儒雅的书白完成签到,获得积分10
10秒前
朴素太阳发布了新的文献求助10
10秒前
Owen应助默默莫莫采纳,获得10
10秒前
梦追阳完成签到 ,获得积分10
10秒前
10秒前
Mic应助sghe采纳,获得10
11秒前
11秒前
11秒前
yo一天发布了新的文献求助10
11秒前
小蘑菇应助F光采纳,获得10
11秒前
屋子完成签到,获得积分10
12秒前
浮游应助春风不语采纳,获得10
13秒前
SciGPT应助yuyu采纳,获得10
13秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5571571
求助须知:如何正确求助?哪些是违规求助? 4656806
关于积分的说明 14717928
捐赠科研通 4597626
什么是DOI,文献DOI怎么找? 2523291
邀请新用户注册赠送积分活动 1494143
关于科研通互助平台的介绍 1464280