Unveiling the Synergistic Potential of Laser Chemical Solid‐Phase Deposition of Atomic Platinum‐Metal Layer on 2D Materials for Bifunctional Catalysts

材料科学 双功能 原子层沉积 分解水 催化作用 电催化剂 化学工程 过电位 纳米技术 析氧 双金属片 纳米复合材料 金属 图层(电子) 冶金 电化学 电极 光催化 物理化学 化学 生物化学 工程类
作者
Wendi Yi,Ruohan Yu,Haoqing Jiang,Jinsong Wu,Gary J. Cheng
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:34 (6) 被引量:3
标识
DOI:10.1002/adfm.202308575
摘要

Abstract The formation of high‐density atomic metal layers on 2D materials enhances catalytic device development by providing a large surface area, precise control over active sites, and enhanced reactivity. Here, pulsed laser‐induced chemical solid‐phase deposition (LCSD) is introduced for achieving high‐density atomic metal layers. By leveraging high‐density plasma generated via pulsed nanosecond laser irradiation of thin salt layers on 2D materials, atomic‐scale metals are deposited onto abundant nucleation sites, creating dense atomic‐metal layers. This study engineers layered double hydroxide (LDH) materials layered with atomic platinum‐based alloys, exhibiting exceptional catalytic activity for overall water splitting. LDH's excellent oxygen evolution performance combined with remarkable advances in hydrogen evolution catalysis are achieved. Introducing a second element improves Pt layer dispersion and uniformity, resulting in extraordinary Pt distribution density and minimal overpotential. The LDH and Pt‐metal combination creates powerful synergistic effects, significantly enhancing catalytic performance and enabling superior bifunctional catalysts for water splitting. LCSD effectively fabricates stable nanocomposites designed for electrocatalytic applications, leveraging unique structures of atom‐scale metal‐supported composite 2D materials, enhancing overall electrocatalytic performance. This breakthrough impacts energy conversion and environmental protection, broadening electrocatalysis and revolutionizing atom‐scale metal‐supported composite 2D materials. Its practical applications span various areas, contributing to sustainable energy solutions and environmental preservation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
赘婿应助FFZ采纳,获得10
刚刚
可乐鸡翅发布了新的文献求助10
刚刚
搜集达人应助紧张的毛衣采纳,获得10
1秒前
1秒前
JJJJJin发布了新的文献求助10
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
胖虎发布了新的文献求助10
1秒前
1秒前
啊哈哈哈发布了新的文献求助10
2秒前
刘雄伟完成签到,获得积分20
2秒前
2秒前
2秒前
唯唯诺诺完成签到,获得积分10
4秒前
韩嘉琦发布了新的文献求助10
4秒前
bee发布了新的文献求助10
4秒前
再一发布了新的文献求助10
4秒前
胡图图完成签到,获得积分10
5秒前
panyang发布了新的文献求助10
5秒前
w。发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
7秒前
阿财发布了新的文献求助10
8秒前
8秒前
asdfg123发布了新的文献求助10
8秒前
疑问完成签到,获得积分10
8秒前
9秒前
科研通AI6应助xuan采纳,获得10
9秒前
善学以致用应助xuan采纳,获得10
9秒前
Owen应助xuan采纳,获得10
9秒前
汉堡包应助xuan采纳,获得10
9秒前
深情安青应助xuan采纳,获得10
9秒前
情怀应助xuan采纳,获得10
9秒前
Jared应助xuan采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648206
求助须知:如何正确求助?哪些是违规求助? 4775141
关于积分的说明 15043236
捐赠科研通 4807251
什么是DOI,文献DOI怎么找? 2570608
邀请新用户注册赠送积分活动 1527392
关于科研通互助平台的介绍 1486407