细胞毒性
多糖
化学
细胞培养
免疫系统
生物化学
生物
免疫学
体外
遗传学
作者
Kwan Mo Yang,Yunfei Ge,Subramanian Palanisamy,Yutong Zhang,Fang Kou,Khamphone Yelithao,Duyun Jeong,SangGuan You,Seok‐Byung Lim
标识
DOI:10.1016/j.ijbiomac.2023.127605
摘要
In this study, Cnidium officinale-derived polysaccharides were isolated and investigated for their immune enhancing and anticancer activities. The isolated crude and its fractions, such as F1 and F2, contain carbohydrates (51.3-63.1%), sulfates (5.4-5.8%), proteins (1.5-7.1%), and uronic acids (2.1-26.9%). The molecular weight (Mw) of the polysaccharides ranged from 59.9 to 429.0 × 103 g/mol. The immunostimulatory activity of the polysaccharides was tested on RAW 264.7 cells, and the results showed that the F2 treatment notably enhanced pro-inflammatory activity in RAW 264.7 cells by increasing NO production and the expression of various cytokines. Furthermore, the influence of polysaccharide treatment on natural killer cells (NK-92) anticancer activities was investigated using a colon cancer cell line (HCT-116). Crude polysaccharide and its fractions showed no direct cytotoxicity to NK-92 and HCT-116 cells. However, the treatment of F2 showed an enhancement of NK-92 cells cytotoxicity against HCT-116 cells by upregulating the mRNA expression of IFN-γ, TNF-α, NKGp44, and granzyme-B. The western blot results showed that the induced RAW 264.7 cells activation and NK-92 cells cytotoxicity occur via NF-κB and MAPK signaling pathways. Overall, C. officinale-derived polysaccharides show potential as immunotherapeutic agents capable of enhancing pro-inflammatory macrophage signaling and activating NK-92 cells; thus, they could be useful for biomedical applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI