亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Research on Automatic Detection System of Drawing Defects based on Machine Vision

预处理器 机器视觉 计算机科学 Python(编程语言) 人工智能 软件 适应性 体积热力学 自动X射线检查 自动光学检测 图像处理 计算机视觉 工程制图 图像(数学) 工程类 操作系统 生态学 物理 量子力学 生物
作者
Yupeng Pan,Li Chen,Baogeng Xin,Yong Liu
出处
期刊:Recent Patents on Engineering [Bentham Science]
卷期号:18 (8)
标识
DOI:10.2174/1872212118666230914103818
摘要

Background: For a long time, product packaging has been used as an instruction manual to connect consumers and factories. Product packaging is an important column in product image display and information presentation. However, missing prints, misprints, and surface stains during the manufacture of packaging bags will cause consumers to misunderstand product information. Based on machine vision, image processing technology, and Python language, this paper designs an automatic detection system for paper defects. Through the preprocessing of the image of the paper to be tested, after the paper area is extracted and compared with the standard template paper, the defective parts of the paper to be tested relative to the standard template paper can be quickly and accurately obtained. The system has a single drawing detection time of 2~3 seconds, and the measurement accuracy rate reaches 100%. The results show that the system has high measurement accuracy, high measurement precision, fast measurement speed, strong adaptability to the environment, and can meet the requirements of detecting defective paper. Objective: The purpose of this study is to develop an automatic detection system for packaging paper, which can detect all defective parts of defective paper compared with standard paper templates. This study aims to reduce the misprints or stains that may occur when producing high-volume bags. The system optimizes and controls the detection accuracy, detection time, detection accuracy and detection environment to ensure that the system can meet the real detection requirements. Method: First, the accompanying software of this system is used to import the standard template of the inspection paper and use the industrial camera to obtain the original image of the inspection drawing. Then, a series of necessary processing is performed on the image: grayscale, Gaussian filter, median filter, binarization, edge detection, contour detection, and the paper area covered with the image is extracted through inverse perspective transformation. Secondly, divide the picture into several blocks and measure the translation matrix of each block to achieve translation fine-tuning to achieve higher detection accuracy. Then, the defect mask is obtained by comparing it with the standard template, and the mask is fine-tuned and processed by the strong noise reduction algorithm. After median filtering, binarization, erosion, marking and other operations are performed to realize the final defect area finding and marking. Finally, all defective areas will be displayed in the designated area of the included software. Results: The detection accuracy rate of this system for the defect area reaches 100%, the minimum range of the recognition area reaches 1mm (2 pixels), the light intensity of the detection environment can adapt to 50 gray levels compared with the template, and the detection of a single drawing only takes 2 ~3 seconds, indicating the high detection efficiency of the system. A patent application for the system has already begun. Conclusion: The system has strong adaptability to the light intensity range of the testing environment, and the minimum testing area can meet the requirements of most production drawings. The accuracy of identifying the defect area of the testing drawings shows that the system can complete the testing task well when the testing environment is suitable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助Frank采纳,获得10
51秒前
1分钟前
再给我来点抽象的应助Jim采纳,获得10
1分钟前
科研通AI5应助榆果子采纳,获得10
2分钟前
fufufu123完成签到 ,获得积分10
2分钟前
孙孙应助Jim采纳,获得30
3分钟前
充电宝应助EliotFang采纳,获得10
3分钟前
3分钟前
陈杰发布了新的文献求助10
3分钟前
kuoping完成签到,获得积分0
4分钟前
彭于晏应助科研通管家采纳,获得10
4分钟前
nickel完成签到,获得积分10
5分钟前
5分钟前
EliotFang发布了新的文献求助10
5分钟前
沉沉完成签到 ,获得积分0
5分钟前
5分钟前
5分钟前
Frank发布了新的文献求助10
6分钟前
oleskarabach发布了新的文献求助10
6分钟前
EliotFang完成签到,获得积分10
6分钟前
fsznc完成签到 ,获得积分0
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
oleskarabach发布了新的文献求助10
6分钟前
CipherSage应助科研通管家采纳,获得10
8分钟前
开心完成签到 ,获得积分10
8分钟前
8分钟前
顾矜应助zsc采纳,获得10
8分钟前
榆果子发布了新的文献求助10
8分钟前
榆果子完成签到,获得积分10
9分钟前
我是笨蛋完成签到 ,获得积分10
9分钟前
9分钟前
9分钟前
荆棘鸟发布了新的文献求助10
9分钟前
正传阿飞完成签到,获得积分10
10分钟前
隐形曼青应助荆棘鸟采纳,获得10
10分钟前
荆棘鸟完成签到,获得积分10
10分钟前
10分钟前
Frank完成签到,获得积分10
10分钟前
鲤鱼听荷完成签到 ,获得积分10
11分钟前
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4582372
求助须知:如何正确求助?哪些是违规求助? 4000106
关于积分的说明 12382171
捐赠科研通 3675045
什么是DOI,文献DOI怎么找? 2025670
邀请新用户注册赠送积分活动 1059319
科研通“疑难数据库(出版商)”最低求助积分说明 945976