亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Adaptive recurrent neural network for uncertainties estimation in feedback control system

循环神经网络 控制理论(社会学) 前馈 计算机科学 参数统计 人工神经网络 前馈神经网络 跟踪误差 控制器(灌溉) 适应(眼睛) 理论(学习稳定性) 自适应控制 瞬态(计算机编程) 控制工程 控制(管理) 人工智能 工程类 机器学习 数学 光学 物理 操作系统 统计 生物 农学
作者
Adel Merabet,Adel Merabet,Ahmed Al‐Durra,Ehab F. El‐Saadany
标识
DOI:10.1016/j.jai.2023.07.001
摘要

In this paper, a recurrent neural network (RNN) is used to estimate uncertainties and implement feedback control for nonlinear dynamic systems. The neural network approximates the uncertainties related to unmodeled dynamics, parametric variations, and external disturbances. The RNN has a single hidden layer and uses the tracking error and the output as feedback to estimate the disturbance. The RNN weights are online adapted, and the adaptation laws are developed from the stability analysis of the controlled system with the RNN estimation. The used activation function, at the hidden layer, has an expression that simplifies the adaptation laws from the stability analysis. It is found that the adaptive RNN enhances the tracking performance of the feedback controller at the transient and steady state responses. The proposed RNN based feedback control is applied to a DC–DC converter for current regulation. Simulation and experimental results are provided to show its effectiveness. Compared to the feedforward neural network and the conventional feedback control, the RNN based feedback control provides good tracking performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
寒冷河马发布了新的文献求助10
9秒前
9秒前
11秒前
冷酷飞飞完成签到 ,获得积分10
13秒前
yuanyuan发布了新的文献求助10
13秒前
情怀应助李光辉采纳,获得10
22秒前
zy完成签到 ,获得积分10
29秒前
李光辉完成签到,获得积分20
31秒前
英俊的铭应助yuanyuan采纳,获得10
32秒前
优美紫槐应助张志超采纳,获得10
33秒前
35秒前
37秒前
syalonyui发布了新的文献求助10
39秒前
41秒前
桐桐应助科研通管家采纳,获得10
41秒前
41秒前
苏幕遮发布了新的文献求助10
42秒前
JamesPei应助冰糖葫芦娃采纳,获得10
44秒前
DDDDD完成签到 ,获得积分10
49秒前
共享精神应助苏幕遮采纳,获得10
51秒前
57秒前
文静水池完成签到,获得积分10
1分钟前
年鱼精完成签到 ,获得积分10
1分钟前
1分钟前
年轻豌豆发布了新的文献求助10
1分钟前
1分钟前
1分钟前
酷波er应助Zenia采纳,获得10
1分钟前
深情安青应助shuiyi采纳,获得10
1分钟前
1分钟前
司空晓山发布了新的文献求助10
1分钟前
芝士奶盖有点咸完成签到 ,获得积分10
1分钟前
Michelangelo_微风完成签到,获得积分10
1分钟前
choshuenco发布了新的文献求助20
1分钟前
1分钟前
1分钟前
Zenia发布了新的文献求助10
1分钟前
yuanyuan发布了新的文献求助10
1分钟前
张志超发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599674
求助须知:如何正确求助?哪些是违规求助? 4685382
关于积分的说明 14838420
捐赠科研通 4669851
什么是DOI,文献DOI怎么找? 2538158
邀请新用户注册赠送积分活动 1505513
关于科研通互助平台的介绍 1470898