羟基化
聚酮
化学
立体化学
聚酮合酶
酶
酰基载体蛋白
烯二炔
生物化学
生物合成
作者
Ashley Winter,Nisha Khanizeman,Abigail M. C. Barker-Mountford,Andrew J. Devine,Luoyi Wang,Zhiyong Song,J. Davies,Paul R. Race,Christopher Williams,Thomas J. Simpson,Christine L. Willis,Matthew P. Crump
标识
DOI:10.1002/ange.202312514
摘要
Abstract Mupirocin is a clinically important antibiotic produced by a trans ‐AT Type I polyketide synthase (PKS) in Pseudomonas fluorescens . The major bioactive metabolite, pseudomonic acid A (PA−A), is assembled on a tetrasubstituted tetrahydropyran (THP) core incorporating a 6‐hydroxy group proposed to be introduced by α‐hydroxylation of the thioester of the acyl carrier protein (ACP) bound polyketide chain. Herein, we describe an in vitro approach combining purified enzyme components, chemical synthesis, isotopic labelling, mass spectrometry and NMR in conjunction with in vivo studies leading to the first characterisation of the α‐hydroxylation bimodule of the mupirocin biosynthetic pathway. These studies reveal the precise timing of hydroxylation by MupA, substrate specificity and the ACP dependency of the enzyme components that comprise this α‐hydroxylation bimodule. Furthermore, using purified enzyme, it is shown that the MmpA KS 0 shows relaxed substrate specificity, suggesting precise spatiotemporal control of in trans MupA recruitment in the context of the PKS. Finally, the detection of multiple intermodular MupA/ACP interactions suggests these bimodules may integrate MupA into their assembly.
科研通智能强力驱动
Strongly Powered by AbleSci AI