析氧
尖晶石
阳极
催化作用
电化学
材料科学
化学
纳米技术
无机化学
化学工程
电极
冶金
物理化学
生物化学
工程类
作者
Lin Lei,Qiang Fu,Ran Wang,Tai Yao,Xianjie Wang,Bo Song
标识
DOI:10.1002/aesr.202300075
摘要
The development of proton exchange membrane water electrolyzers (PEMWEs) is primarily challenged by the slow and unstable oxygen evolution reaction (OER) at the anode. Thus, the pursuit of low‐cost, highly efficient, and durable electrocatalysts is the foundation for the widespread adoption of PEMWEs. In the past few decades, various types of electrocatalysts are proposed to serve as anode materials for acidic OER, but only a few demonstrate catalytic activity and stability comparable to iridium‐ and ruthenium‐based electrocatalysts. In recent years, some transition‐metal oxides are studied as potential candidates for acidic OER. For instance, spinel‐type oxides, e.g., Co 3 O 4 , and corresponding compounds demonstrate promise due to the rich coordination structure of metallic ions and moderate adoption energy for intermedia. In this review, recent advances in spinel‐type oxides for acidic OER are summarized. First, a fundamental understanding of reaction mechanisms for OER in acidic media is introduced. Thereafter, recent progress in rational design principles and optimization strategies for spinel oxides is systematically summarized. Finally, challenges and perspectives for the development of spinel‐based acidic OER electrocatalysts are discussed.
科研通智能强力驱动
Strongly Powered by AbleSci AI