Wnt信号通路
间充质干细胞
细胞生物学
化学
雅普1
下调和上调
骨髓
连环素
癌症研究
信号转导
生物
免疫学
生物化学
转录因子
基因
作者
Xuepeng Wang,Chunchun Zou,Changju Hou,Zhenyu Bian,Jiang Wu,Maoqiang Li,Liulong Zhu
标识
DOI:10.1016/j.bcp.2023.115829
摘要
Mesenchymal stem cells (MSCs) and their derived extracellular vesicles (EVs) have emerged as promising tools for promoting bone regeneration. This study investigates the functions of EVs derived from bone marrow-derived MSCs (BMSCs) in osteoporosis (OP) and the molecular mechanism. EVs were isolated from primary BMSCs in mice. A mouse model with OP was induced by ovariectomy. Treatment with EVs restored bone mass and strength, attenuated trabecular bone loss and cartilage damage, and increased osteogenesis while suppressing osteoclastogenesis in ovariectomized mice. In vitro, the EVs treatment improved the osteogenic differentiation of MC-3T3 while inhibiting osteoclastic differentiation of RAW264.7 cells. Microarray analysis revealed a significant upregulation of ubiquitin specific peptidase 7 (USP7) expression in mouse bone tissues following EV treatment. USP7 was found to interact with Yes1 associated transcriptional regulator (YAP1) and stabilize YAP1 protein through deubiquitination modification. YAP1-related genes were enriched in the Wnt/β-catenin signaling, and overexpression of YAP1 promoted the nuclear translocation of β-catenin. Functional experiments underscored the critical role of maintaining USP7, YAP1, and β-catenin levels in the pro-osteogenic and anti-osteoclastogenic properties of the BMSC-EVs. In conclusion, this study demonstrates that USP7, delivered by BMSC-derived EVs, stabilizes YAP1 protein, thereby ameliorating bone formation in OP through the Wnt/β-catenin activation.
科研通智能强力驱动
Strongly Powered by AbleSci AI