UNesT: Local spatial representation learning with hierarchical transformer for efficient medical segmentation

计算机科学 分割 人工智能 编码器 特征学习 变压器 图像分割 模式识别(心理学) 概化理论 深度学习 数学 统计 物理 量子力学 电压 操作系统
作者
Xin Yu,Qi Yang,Yinchi Zhou,Leon Y. Cai,Riqiang Gao,Ho Hin Lee,Thomas Li,Shunxing Bao,Zhoubing Xu,Thomas A. Lasko,Richard G. Abramson,Zizhao Zhang,Yuankai Huo,Bennett A. Landman,Yucheng Tang
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:90: 102939-102939 被引量:25
标识
DOI:10.1016/j.media.2023.102939
摘要

Transformer-based models, capable of learning better global dependencies, have recently demonstrated exceptional representation learning capabilities in computer vision and medical image analysis. Transformer reformats the image into separate patches and realizes global communication via the self-attention mechanism. However, positional information between patches is hard to preserve in such 1D sequences, and loss of it can lead to sub-optimal performance when dealing with large amounts of heterogeneous tissues of various sizes in 3D medical image segmentation. Additionally, current methods are not robust and efficient for heavy-duty medical segmentation tasks such as predicting a large number of tissue classes or modeling globally inter-connected tissue structures. To address such challenges and inspired by the nested hierarchical structures in vision transformer, we proposed a novel 3D medical image segmentation method (UNesT), employing a simplified and faster-converging transformer encoder design that achieves local communication among spatially adjacent patch sequences by aggregating them hierarchically. We extensively validate our method on multiple challenging datasets, consisting of multiple modalities, anatomies, and a wide range of tissue classes, including 133 structures in the brain, 14 organs in the abdomen, 4 hierarchical components in the kidneys, inter-connected kidney tumors and brain tumors. We show that UNesT consistently achieves state-of-the-art performance and evaluate its generalizability and data efficiency. Particularly, the model achieves whole brain segmentation task complete ROI with 133 tissue classes in a single network, outperforming prior state-of-the-art method SLANT27 ensembled with 27 networks. Our model performance increases the mean DSC score of the publicly available Colin and CANDI dataset from 0.7264 to 0.7444 and from 0.6968 to 0.7025, respectively. Code, pre-trained models, and use case pipeline are available at: https://github.com/MASILab/UNesT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
易水完成签到 ,获得积分10
5秒前
柒月完成签到,获得积分10
7秒前
痴情的靖柔完成签到 ,获得积分10
9秒前
Jankim完成签到 ,获得积分10
12秒前
12秒前
Isaacwg168完成签到 ,获得积分10
16秒前
jerry完成签到 ,获得积分10
17秒前
管理想完成签到,获得积分10
17秒前
yyy完成签到 ,获得积分10
18秒前
儒雅儒雅完成签到 ,获得积分10
19秒前
peterlzb1234567完成签到,获得积分10
20秒前
凶狠的盛男完成签到 ,获得积分10
22秒前
23秒前
江夏完成签到 ,获得积分10
27秒前
不吃番茄完成签到,获得积分10
27秒前
刘刘完成签到 ,获得积分10
28秒前
33秒前
先锋老刘001完成签到,获得积分10
33秒前
39秒前
100发布了新的文献求助10
45秒前
春景当思完成签到,获得积分10
46秒前
畅快的谷秋完成签到 ,获得积分10
47秒前
细雨听风完成签到,获得积分10
48秒前
独特翠丝完成签到,获得积分10
49秒前
49秒前
数学情缘完成签到,获得积分10
55秒前
东方越彬发布了新的文献求助20
57秒前
drhwang发布了新的文献求助10
1分钟前
Prime完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
美好乐松应助科研通管家采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
1分钟前
cdercder应助科研通管家采纳,获得150
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671320
求助须知:如何正确求助?哪些是违规求助? 3228175
关于积分的说明 9778760
捐赠科研通 2938438
什么是DOI,文献DOI怎么找? 1610028
邀请新用户注册赠送积分活动 760503
科研通“疑难数据库(出版商)”最低求助积分说明 736020