Three-dimensional leaf edge reconstruction using a combination of two- and three-dimensional phenotyping approaches

分割 人工智能 三维重建 计算机科学 匹配(统计) GSM演进的增强数据速率 计算机视觉 模式识别(心理学) 噪音(视频) 鉴定(生物学) 数学 图像(数学) 生物 植物 统计
作者
Hidekazu Murata,Koji Noshita
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-3347414/v1
摘要

Abstract Background: The physiological functions of plants are carried out by leaves, which are important organs. The morphological traits of leaves serve multiple functional requirements and demands of plants. Traditional techniques for quantifying leaf morphology rely largely on two-dimensional (2D) methods, resulting in a limited understanding of the three-dimensional (3D) functionalities of leaves. Notably, recent advancements in surveying technologies have improved 3D data acquisition processes. However, there are still challenges in producing accurate 3D-representations of leaf morphologies, particularly leaf edges. Therefore, in this study, we propose a method for reconstructing 3D leaf edges using a combination of 2D image instance segmentation and curve-based 3D reconstruction. Results: The proposed method reconstructed 3D leaf edges from multi-view images based on deep neural network-based instance segmentation for 2D edge detection, SfM for estimating camera positions and orientations, leaf correspondence identification for matching leaves among multi-view images, curve-based 3D reconstruction for estimating leaf edges as 3D curve fragments, and B-spline curve fitting for integrating curve fragments into a 3D leaf edge. The method was demonstrated on both virtual and actual plant leaves. On the virtually generated leaves, we evaluated the accuracy of the 3D reconstruction by calculating standardized Fréchet distance, which reveals that small leaves and high camera noise pose greater challenges to reconstruction. To balance the number and precision of 3D curve fragments, we proposed guidelines for setting the threshold for how only reliable curve fragments are reconstructed based on simulated data. These guidelines suggested that the threshold becomes lower with greater occlusions, larger leaf size, and camera positional error greater than a certain level. We also found the number of images does not affect the optimal threshold except in very few cases. Moreover, the proposed method succeeded in reconstructing holes in the leaf when the number of holes is three or less. Conclusions: In this study, a nondestructive method for 3D leaf edge reconstruction was developed to address the 3D morphological properties of plants, which have been challenging to evaluate quantitatively. It is a promising way to capture whole plant architecture by combining 2D and 3D phenotyping approaches adapted to the target anatomical structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
细心书包应助zhong采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
在水一方应助holy采纳,获得10
2秒前
空白完成签到 ,获得积分10
2秒前
3秒前
Xxsy发布了新的文献求助10
3秒前
斯文败类应助majar采纳,获得10
3秒前
CH3OH完成签到,获得积分10
3秒前
4秒前
申申完成签到 ,获得积分10
4秒前
4秒前
ljw完成签到,获得积分10
7秒前
123456发布了新的文献求助10
7秒前
冷艳的纸鹤完成签到,获得积分10
7秒前
魏一刀发布了新的文献求助10
8秒前
高青青完成签到,获得积分20
8秒前
9秒前
10秒前
明亮白筠完成签到,获得积分10
11秒前
12秒前
12秒前
lzl完成签到,获得积分10
12秒前
13秒前
ding应助薛寒香采纳,获得10
13秒前
6666发布了新的文献求助10
14秒前
15秒前
Puffkten完成签到 ,获得积分10
15秒前
16秒前
酷波er应助黎明采纳,获得10
16秒前
魏一刀完成签到,获得积分20
16秒前
majar完成签到,获得积分10
16秒前
史燕照发布了新的文献求助10
16秒前
Owen应助Rika_Ran采纳,获得20
16秒前
LiuChuannan完成签到,获得积分10
18秒前
星辰大海应助张婷采纳,获得10
18秒前
hs完成签到 ,获得积分10
18秒前
houfei发布了新的文献求助20
18秒前
顺利紫丝发布了新的文献求助10
19秒前
20秒前
充电宝应助白河采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424329
求助须知:如何正确求助?哪些是违规求助? 4538701
关于积分的说明 14163322
捐赠科研通 4455559
什么是DOI,文献DOI怎么找? 2443800
邀请新用户注册赠送积分活动 1434995
关于科研通互助平台的介绍 1412304