亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Three-dimensional leaf edge reconstruction using a combination of two- and three-dimensional phenotyping approaches

分割 人工智能 三维重建 计算机科学 匹配(统计) GSM演进的增强数据速率 计算机视觉 模式识别(心理学) 噪音(视频) 鉴定(生物学) 数学 图像(数学) 生物 植物 统计
作者
Hidekazu Murata,Koji Noshita
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-3347414/v1
摘要

Abstract Background: The physiological functions of plants are carried out by leaves, which are important organs. The morphological traits of leaves serve multiple functional requirements and demands of plants. Traditional techniques for quantifying leaf morphology rely largely on two-dimensional (2D) methods, resulting in a limited understanding of the three-dimensional (3D) functionalities of leaves. Notably, recent advancements in surveying technologies have improved 3D data acquisition processes. However, there are still challenges in producing accurate 3D-representations of leaf morphologies, particularly leaf edges. Therefore, in this study, we propose a method for reconstructing 3D leaf edges using a combination of 2D image instance segmentation and curve-based 3D reconstruction. Results: The proposed method reconstructed 3D leaf edges from multi-view images based on deep neural network-based instance segmentation for 2D edge detection, SfM for estimating camera positions and orientations, leaf correspondence identification for matching leaves among multi-view images, curve-based 3D reconstruction for estimating leaf edges as 3D curve fragments, and B-spline curve fitting for integrating curve fragments into a 3D leaf edge. The method was demonstrated on both virtual and actual plant leaves. On the virtually generated leaves, we evaluated the accuracy of the 3D reconstruction by calculating standardized Fréchet distance, which reveals that small leaves and high camera noise pose greater challenges to reconstruction. To balance the number and precision of 3D curve fragments, we proposed guidelines for setting the threshold for how only reliable curve fragments are reconstructed based on simulated data. These guidelines suggested that the threshold becomes lower with greater occlusions, larger leaf size, and camera positional error greater than a certain level. We also found the number of images does not affect the optimal threshold except in very few cases. Moreover, the proposed method succeeded in reconstructing holes in the leaf when the number of holes is three or less. Conclusions: In this study, a nondestructive method for 3D leaf edge reconstruction was developed to address the 3D morphological properties of plants, which have been challenging to evaluate quantitatively. It is a promising way to capture whole plant architecture by combining 2D and 3D phenotyping approaches adapted to the target anatomical structures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
懒大王完成签到,获得积分10
刚刚
4秒前
9秒前
shinn发布了新的文献求助10
11秒前
12秒前
13秒前
老婶子发布了新的文献求助10
15秒前
充电宝应助shinn采纳,获得10
15秒前
友好谷蓝发布了新的文献求助10
19秒前
22秒前
铭铭完成签到 ,获得积分10
22秒前
友好谷蓝完成签到,获得积分10
26秒前
26秒前
28秒前
31秒前
shinn发布了新的文献求助10
38秒前
无花果应助Omni采纳,获得10
39秒前
43秒前
44秒前
张元东完成签到 ,获得积分10
44秒前
MUYI发布了新的文献求助10
49秒前
科研通AI6.1应助taysun采纳,获得10
53秒前
快乐芷荷完成签到 ,获得积分10
1分钟前
炙热的南霜完成签到,获得积分10
1分钟前
无花果应助耕云钓月采纳,获得10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Tanya完成签到 ,获得积分10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
MUYI完成签到,获得积分10
1分钟前
taysun发布了新的文献求助10
1分钟前
Lin完成签到,获得积分10
1分钟前
CodeCraft应助MUYI采纳,获得10
1分钟前
1分钟前
甜美的沅完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772446
求助须知:如何正确求助?哪些是违规求助? 5598683
关于积分的说明 15429642
捐赠科研通 4905409
什么是DOI,文献DOI怎么找? 2639381
邀请新用户注册赠送积分活动 1587308
关于科研通互助平台的介绍 1542165