Three-dimensional leaf edge reconstruction using a combination of two- and three-dimensional phenotyping approaches

分割 人工智能 三维重建 计算机科学 匹配(统计) GSM演进的增强数据速率 计算机视觉 模式识别(心理学) 噪音(视频) 鉴定(生物学) 数学 图像(数学) 生物 植物 统计
作者
Hidekazu Murata,Koji Noshita
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-3347414/v1
摘要

Abstract Background: The physiological functions of plants are carried out by leaves, which are important organs. The morphological traits of leaves serve multiple functional requirements and demands of plants. Traditional techniques for quantifying leaf morphology rely largely on two-dimensional (2D) methods, resulting in a limited understanding of the three-dimensional (3D) functionalities of leaves. Notably, recent advancements in surveying technologies have improved 3D data acquisition processes. However, there are still challenges in producing accurate 3D-representations of leaf morphologies, particularly leaf edges. Therefore, in this study, we propose a method for reconstructing 3D leaf edges using a combination of 2D image instance segmentation and curve-based 3D reconstruction. Results: The proposed method reconstructed 3D leaf edges from multi-view images based on deep neural network-based instance segmentation for 2D edge detection, SfM for estimating camera positions and orientations, leaf correspondence identification for matching leaves among multi-view images, curve-based 3D reconstruction for estimating leaf edges as 3D curve fragments, and B-spline curve fitting for integrating curve fragments into a 3D leaf edge. The method was demonstrated on both virtual and actual plant leaves. On the virtually generated leaves, we evaluated the accuracy of the 3D reconstruction by calculating standardized Fréchet distance, which reveals that small leaves and high camera noise pose greater challenges to reconstruction. To balance the number and precision of 3D curve fragments, we proposed guidelines for setting the threshold for how only reliable curve fragments are reconstructed based on simulated data. These guidelines suggested that the threshold becomes lower with greater occlusions, larger leaf size, and camera positional error greater than a certain level. We also found the number of images does not affect the optimal threshold except in very few cases. Moreover, the proposed method succeeded in reconstructing holes in the leaf when the number of holes is three or less. Conclusions: In this study, a nondestructive method for 3D leaf edge reconstruction was developed to address the 3D morphological properties of plants, which have been challenging to evaluate quantitatively. It is a promising way to capture whole plant architecture by combining 2D and 3D phenotyping approaches adapted to the target anatomical structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
鳕鱼完成签到 ,获得积分10
2秒前
濠哥妈咪发布了新的文献求助10
2秒前
一颗糖完成签到 ,获得积分10
2秒前
yp完成签到,获得积分10
4秒前
xiaowen发布了新的文献求助10
5秒前
简单发布了新的文献求助20
5秒前
星川完成签到,获得积分10
6秒前
6秒前
张子怡完成签到 ,获得积分10
6秒前
CCS完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
科研通AI6应助噢耶采纳,获得10
7秒前
汤柏钧完成签到 ,获得积分10
7秒前
8秒前
8秒前
丰富源智完成签到,获得积分10
9秒前
研友_8oYg4n完成签到,获得积分10
10秒前
xiaowen完成签到,获得积分10
11秒前
SucceedIn完成签到,获得积分10
12秒前
yechengjie完成签到,获得积分10
13秒前
衢夭完成签到,获得积分10
13秒前
安详的自中完成签到,获得积分10
14秒前
玉玊完成签到 ,获得积分10
14秒前
天天好心覃完成签到 ,获得积分10
14秒前
jeronimo发布了新的文献求助10
15秒前
16秒前
大小罐子完成签到,获得积分10
17秒前
17秒前
每天都很忙完成签到 ,获得积分10
17秒前
熊猫之歌完成签到,获得积分10
18秒前
IU冰冰完成签到 ,获得积分10
20秒前
辛勤的毛毛完成签到 ,获得积分10
20秒前
研友_ngXbVZ发布了新的文献求助10
20秒前
火星上白羊完成签到,获得积分10
20秒前
彪壮的幻丝完成签到 ,获得积分10
21秒前
坚强的铅笔完成签到 ,获得积分10
21秒前
Betaremains完成签到,获得积分10
21秒前
22秒前
愉快的夜雪完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
A Systemic-Functional Study of Language Choice in Singapore 400
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4871004
求助须知:如何正确求助?哪些是违规求助? 4161130
关于积分的说明 12902777
捐赠科研通 3916945
什么是DOI,文献DOI怎么找? 2150903
邀请新用户注册赠送积分活动 1169186
关于科研通互助平台的介绍 1073026