Three-dimensional leaf edge reconstruction using a combination of two- and three-dimensional phenotyping approaches

分割 人工智能 三维重建 计算机科学 匹配(统计) GSM演进的增强数据速率 计算机视觉 模式识别(心理学) 噪音(视频) 鉴定(生物学) 数学 图像(数学) 生物 植物 统计
作者
Hidekazu Murata,Koji Noshita
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-3347414/v1
摘要

Abstract Background: The physiological functions of plants are carried out by leaves, which are important organs. The morphological traits of leaves serve multiple functional requirements and demands of plants. Traditional techniques for quantifying leaf morphology rely largely on two-dimensional (2D) methods, resulting in a limited understanding of the three-dimensional (3D) functionalities of leaves. Notably, recent advancements in surveying technologies have improved 3D data acquisition processes. However, there are still challenges in producing accurate 3D-representations of leaf morphologies, particularly leaf edges. Therefore, in this study, we propose a method for reconstructing 3D leaf edges using a combination of 2D image instance segmentation and curve-based 3D reconstruction. Results: The proposed method reconstructed 3D leaf edges from multi-view images based on deep neural network-based instance segmentation for 2D edge detection, SfM for estimating camera positions and orientations, leaf correspondence identification for matching leaves among multi-view images, curve-based 3D reconstruction for estimating leaf edges as 3D curve fragments, and B-spline curve fitting for integrating curve fragments into a 3D leaf edge. The method was demonstrated on both virtual and actual plant leaves. On the virtually generated leaves, we evaluated the accuracy of the 3D reconstruction by calculating standardized Fréchet distance, which reveals that small leaves and high camera noise pose greater challenges to reconstruction. To balance the number and precision of 3D curve fragments, we proposed guidelines for setting the threshold for how only reliable curve fragments are reconstructed based on simulated data. These guidelines suggested that the threshold becomes lower with greater occlusions, larger leaf size, and camera positional error greater than a certain level. We also found the number of images does not affect the optimal threshold except in very few cases. Moreover, the proposed method succeeded in reconstructing holes in the leaf when the number of holes is three or less. Conclusions: In this study, a nondestructive method for 3D leaf edge reconstruction was developed to address the 3D morphological properties of plants, which have been challenging to evaluate quantitatively. It is a promising way to capture whole plant architecture by combining 2D and 3D phenotyping approaches adapted to the target anatomical structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
67完成签到 ,获得积分10
1秒前
Cold-Drink-Shop完成签到,获得积分10
8秒前
千玺的小粉丝儿完成签到,获得积分10
9秒前
gyy完成签到 ,获得积分10
11秒前
SUNNYONE完成签到 ,获得积分10
11秒前
Lemenchichi完成签到,获得积分10
14秒前
HYQ完成签到 ,获得积分10
26秒前
NINI完成签到 ,获得积分10
29秒前
寒风完成签到,获得积分10
29秒前
xy完成签到 ,获得积分10
33秒前
xxm完成签到 ,获得积分10
35秒前
熊二完成签到,获得积分10
43秒前
淡然的剑通完成签到 ,获得积分10
45秒前
Conner完成签到 ,获得积分10
47秒前
MS903完成签到 ,获得积分10
47秒前
科研通AI5应助科研通管家采纳,获得10
57秒前
南浔完成签到 ,获得积分10
1分钟前
knight7m完成签到 ,获得积分10
1分钟前
砚木完成签到 ,获得积分10
1分钟前
单纯的小土豆完成签到 ,获得积分10
1分钟前
Dasein完成签到 ,获得积分10
1分钟前
欢呼的茗茗完成签到 ,获得积分10
1分钟前
sherry完成签到 ,获得积分10
1分钟前
anhuiwsy完成签到 ,获得积分10
1分钟前
又又完成签到,获得积分10
1分钟前
zhaoyu完成签到 ,获得积分10
1分钟前
GuoSiqi72完成签到 ,获得积分10
1分钟前
笨笨忘幽完成签到,获得积分0
1分钟前
1分钟前
啰友痕武次子完成签到,获得积分10
1分钟前
CLTTT完成签到,获得积分0
1分钟前
吃吃吃不敢吃完成签到 ,获得积分10
2分钟前
大力道罡完成签到,获得积分10
2分钟前
2分钟前
3927456843发布了新的文献求助30
2分钟前
清泉完成签到,获得积分10
2分钟前
俊逸的盛男完成签到 ,获得积分10
2分钟前
清泉发布了新的文献求助10
2分钟前
鼠鼠完成签到 ,获得积分10
2分钟前
白凌风完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5187947
求助须知:如何正确求助?哪些是违规求助? 4372441
关于积分的说明 13613380
捐赠科研通 4225596
什么是DOI,文献DOI怎么找? 2317785
邀请新用户注册赠送积分活动 1316355
关于科研通互助平台的介绍 1266001