Three-dimensional leaf edge reconstruction using a combination of two- and three-dimensional phenotyping approaches

分割 人工智能 三维重建 计算机科学 匹配(统计) GSM演进的增强数据速率 计算机视觉 模式识别(心理学) 噪音(视频) 鉴定(生物学) 数学 图像(数学) 生物 植物 统计
作者
Hidekazu Murata,Koji Noshita
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-3347414/v1
摘要

Abstract Background: The physiological functions of plants are carried out by leaves, which are important organs. The morphological traits of leaves serve multiple functional requirements and demands of plants. Traditional techniques for quantifying leaf morphology rely largely on two-dimensional (2D) methods, resulting in a limited understanding of the three-dimensional (3D) functionalities of leaves. Notably, recent advancements in surveying technologies have improved 3D data acquisition processes. However, there are still challenges in producing accurate 3D-representations of leaf morphologies, particularly leaf edges. Therefore, in this study, we propose a method for reconstructing 3D leaf edges using a combination of 2D image instance segmentation and curve-based 3D reconstruction. Results: The proposed method reconstructed 3D leaf edges from multi-view images based on deep neural network-based instance segmentation for 2D edge detection, SfM for estimating camera positions and orientations, leaf correspondence identification for matching leaves among multi-view images, curve-based 3D reconstruction for estimating leaf edges as 3D curve fragments, and B-spline curve fitting for integrating curve fragments into a 3D leaf edge. The method was demonstrated on both virtual and actual plant leaves. On the virtually generated leaves, we evaluated the accuracy of the 3D reconstruction by calculating standardized Fréchet distance, which reveals that small leaves and high camera noise pose greater challenges to reconstruction. To balance the number and precision of 3D curve fragments, we proposed guidelines for setting the threshold for how only reliable curve fragments are reconstructed based on simulated data. These guidelines suggested that the threshold becomes lower with greater occlusions, larger leaf size, and camera positional error greater than a certain level. We also found the number of images does not affect the optimal threshold except in very few cases. Moreover, the proposed method succeeded in reconstructing holes in the leaf when the number of holes is three or less. Conclusions: In this study, a nondestructive method for 3D leaf edge reconstruction was developed to address the 3D morphological properties of plants, which have been challenging to evaluate quantitatively. It is a promising way to capture whole plant architecture by combining 2D and 3D phenotyping approaches adapted to the target anatomical structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我要发sci发布了新的文献求助10
1秒前
cc完成签到,获得积分20
1秒前
llchen完成签到,获得积分0
2秒前
打打应助执着跳跳糖采纳,获得10
3秒前
夏大雨发布了新的文献求助10
5秒前
Akim应助小陈科研采纳,获得10
6秒前
7秒前
7秒前
7秒前
8秒前
WTC完成签到 ,获得积分10
8秒前
9秒前
jaysecret完成签到,获得积分10
9秒前
10秒前
小鸭子应助yangcou采纳,获得10
11秒前
xny发布了新的文献求助10
12秒前
orixero应助night采纳,获得10
13秒前
阳佟之槐发布了新的文献求助10
13秒前
Young完成签到 ,获得积分10
13秒前
沉静依云完成签到,获得积分10
15秒前
zhentg完成签到,获得积分0
15秒前
英俊的铭应助勤劳的鹤轩采纳,获得10
15秒前
16秒前
RayKream应助研友_LwlAgn采纳,获得10
18秒前
夏大雨完成签到,获得积分10
18秒前
ding应助天真无招采纳,获得10
19秒前
sciscisci发布了新的文献求助10
20秒前
Ganlou应助研友_LwlAgn采纳,获得10
21秒前
22秒前
Singularity应助cc采纳,获得10
24秒前
25秒前
25秒前
WYN发布了新的文献求助10
26秒前
26秒前
26秒前
今后应助JUZI采纳,获得10
28秒前
30秒前
30秒前
night发布了新的文献求助10
31秒前
yud完成签到 ,获得积分10
32秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308460
求助须知:如何正确求助?哪些是违规求助? 2941800
关于积分的说明 8505877
捐赠科研通 2616792
什么是DOI,文献DOI怎么找? 1429755
科研通“疑难数据库(出版商)”最低求助积分说明 663888
邀请新用户注册赠送积分活动 648999