Deep learning-based multimodal emotion recognition from audio, visual, and text modalities: A systematic review of recent advancements and future prospects

计算机科学 模式 多模式学习 深度学习 情感计算 人工智能 多模态 特征学习 万维网 社会科学 社会学
作者
Shiqing Zhang,Yijiao Yang,Chen Chen,Xingnan Zhang,Qingming Leng,Xiaoming Zhao
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:237: 121692-121692 被引量:85
标识
DOI:10.1016/j.eswa.2023.121692
摘要

Emotion recognition has recently attracted extensive interest due to its significant applications to human–computer interaction. The expression of human emotion depends on various verbal and non-verbal languages like audio, visual, text, etc. Emotion recognition is thus well suited as a multimodal rather than single-modal learning problem. Owing to the powerful feature learning capability, extensive deep learning methods have been recently leveraged to capture high-level emotional feature representations for multimodal emotion recognition (MER). Therefore, this paper makes the first effort in comprehensively summarize recent advances in deep learning-based multimodal emotion recognition (DL-MER) involved in audio, visual, and text modalities. We focus on: (1) MER milestones are given to summarize the development tendency of MER, and conventional multimodal emotional datasets are provided; (2) The core principles of typical deep learning models and its recent advancements are overviewed; (3) A systematic survey and taxonomy is provided to cover the state-of-the-art methods related to two key steps in a MER system, including feature extraction and multimodal information fusion; (4) The research challenges and open issues in this field are discussed, and promising future directions are given.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怕黑半仙完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
枫于林完成签到 ,获得积分10
7秒前
8秒前
lml完成签到,获得积分10
8秒前
Mia发布了新的文献求助30
10秒前
RhapsodyHua完成签到,获得积分10
11秒前
12秒前
简单白风完成签到 ,获得积分10
14秒前
老默发布了新的文献求助10
14秒前
orixero应助29采纳,获得10
16秒前
希望天下0贩的0应助yiyi采纳,获得10
18秒前
小蘑菇应助carly采纳,获得10
19秒前
19秒前
Rondab应助科研通管家采纳,获得10
21秒前
YiyueChan完成签到,获得积分10
21秒前
water应助科研通管家采纳,获得10
21秒前
water应助科研通管家采纳,获得10
21秒前
Rondab应助科研通管家采纳,获得10
21秒前
Liufgui应助DianaRang采纳,获得10
21秒前
bkagyin应助科研通管家采纳,获得10
21秒前
Owen应助科研通管家采纳,获得10
21秒前
情怀应助科研通管家采纳,获得10
21秒前
21秒前
21秒前
21秒前
21秒前
湖医小朱完成签到,获得积分10
23秒前
qqqq完成签到,获得积分10
24秒前
Good_小鬼完成签到,获得积分10
28秒前
cocolu完成签到,获得积分0
33秒前
hhhhuo完成签到,获得积分10
34秒前
852应助今今采纳,获得10
34秒前
12wsesd完成签到 ,获得积分10
37秒前
37秒前
yydragen应助火星上小小采纳,获得30
37秒前
39秒前
rong完成签到,获得积分20
40秒前
yiyi发布了新的文献求助10
40秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979648
求助须知:如何正确求助?哪些是违规求助? 3523618
关于积分的说明 11218147
捐赠科研通 3261119
什么是DOI,文献DOI怎么找? 1800416
邀请新用户注册赠送积分活动 879099
科研通“疑难数据库(出版商)”最低求助积分说明 807167