Deep learning-based multimodal emotion recognition from audio, visual, and text modalities: A systematic review of recent advancements and future prospects

计算机科学 模式 多模式学习 深度学习 情感计算 人工智能 多模态 特征学习 万维网 社会科学 社会学
作者
Shiqing Zhang,Yijiao Yang,Chen Chen,Xingnan Zhang,Qingming Leng,Xiaoming Zhao
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:237: 121692-121692 被引量:45
标识
DOI:10.1016/j.eswa.2023.121692
摘要

Emotion recognition has recently attracted extensive interest due to its significant applications to human–computer interaction. The expression of human emotion depends on various verbal and non-verbal languages like audio, visual, text, etc. Emotion recognition is thus well suited as a multimodal rather than single-modal learning problem. Owing to the powerful feature learning capability, extensive deep learning methods have been recently leveraged to capture high-level emotional feature representations for multimodal emotion recognition (MER). Therefore, this paper makes the first effort in comprehensively summarize recent advances in deep learning-based multimodal emotion recognition (DL-MER) involved in audio, visual, and text modalities. We focus on: (1) MER milestones are given to summarize the development tendency of MER, and conventional multimodal emotional datasets are provided; (2) The core principles of typical deep learning models and its recent advancements are overviewed; (3) A systematic survey and taxonomy is provided to cover the state-of-the-art methods related to two key steps in a MER system, including feature extraction and multimodal information fusion; (4) The research challenges and open issues in this field are discussed, and promising future directions are given.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
智勇双全完成签到,获得积分10
刚刚
思源应助刘大宝采纳,获得10
1秒前
qxz完成签到,获得积分10
2秒前
wyj完成签到,获得积分10
2秒前
jjx1005完成签到 ,获得积分10
3秒前
心随风飞应助跳跃尔琴采纳,获得150
4秒前
wood发布了新的文献求助10
6秒前
Erik发布了新的文献求助10
7秒前
小王八完成签到 ,获得积分10
7秒前
8秒前
11秒前
Felix完成签到,获得积分10
13秒前
14秒前
卡卡罗特完成签到,获得积分20
15秒前
顾矜应助wood采纳,获得10
16秒前
16秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
爆米花应助科研通管家采纳,获得10
17秒前
研友_VZG7GZ应助科研通管家采纳,获得10
17秒前
烟火还是永恒完成签到,获得积分10
17秒前
orixero应助科研通管家采纳,获得10
17秒前
赘婿应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
穆紫应助科研通管家采纳,获得20
17秒前
鱼鱼完成签到 ,获得积分10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
思源应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
cheers完成签到,获得积分10
18秒前
杨xy完成签到 ,获得积分10
19秒前
Ella发布了新的文献求助10
22秒前
Yogita发布了新的文献求助10
22秒前
感动尔柳完成签到,获得积分10
24秒前
24秒前
Owen应助沈臻采纳,获得10
25秒前
27秒前
27秒前
28秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134881
求助须知:如何正确求助?哪些是违规求助? 2785770
关于积分的说明 7774093
捐赠科研通 2441601
什么是DOI,文献DOI怎么找? 1298038
科研通“疑难数据库(出版商)”最低求助积分说明 625075
版权声明 600825