A multicenter study on the application of artificial intelligence radiological characteristics to predict prognosis after percutaneous nephrolithotomy

经皮肾镜取石术 医学 接收机工作特性 肾造口术 过度拟合 放射性武器 肾结石 肾功能 金标准(测试) 外科 经皮 放射科 泌尿科 内科学 人工智能 人工神经网络 计算机科学 泌尿系统
作者
Jian Hou,Xiang-Yang Wen,Genyi Qu,Wenwen Chen,Xian‐Yan Xu,Guojun Wu,Ren Ji,Genggeng Wei,Tuo Liang,Wenxiao Huang,Lin Xiong
出处
期刊:Frontiers in Endocrinology [Frontiers Media SA]
卷期号:14
标识
DOI:10.3389/fendo.2023.1184608
摘要

A model to predict preoperative outcomes after percutaneous nephrolithotomy (PCNL) with renal staghorn stones is developed to be an essential preoperative consultation tool.In this study, we constructed a predictive model for one-time stone clearance after PCNL for renal staghorn calculi, so as to predict the stone clearance rate of patients in one operation, and provide a reference direction for patients and clinicians.According to the 175 patients with renal staghorn stones undergoing PCNL at two centers, preoperative/postoperative variables were collected. After identifying characteristic variables using PCA analysis to avoid overfitting. A predictive model was developed for preoperative outcomes after PCNL in patients with renal staghorn stones. In addition, we repeatedly cross-validated their model's predictive efficacy and clinical application using data from two different centers.The study included 175 patients from two centers treated with PCNL. We used a training set and an external validation set. Radionics characteristics, deep migration learning, clinical characteristics, and DTL+Rad-signature were successfully constructed using machine learning based on patients' pre/postoperative imaging characteristics and clinical variables using minimum absolute shrinkage and selection operator algorithms. In this study, DTL-Rad signal was found to be the outstanding predictor of stone clearance in patients with renal deer antler-like stones treated by PCNL. The DTL+Rad signature showed good discriminatory ability in both the training and external validation groups with AUC values of 0.871 (95% CI, 0.800-0.942) and 0.744 (95% CI, 0.617-0.871). The decision curve demonstrated the radiographic model's clinical utility and illustrated specificities of 0.935 and 0.806, respectively.We found a prediction model combining imaging characteristics, neural networks, and clinical characteristics can be used as an effective preoperative prediction method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wxaaaa完成签到,获得积分10
刚刚
李爱国应助dd采纳,获得10
1秒前
2秒前
Jasper应助感性的凉面采纳,获得10
3秒前
3秒前
4秒前
4秒前
5秒前
情怀应助顺顺采纳,获得10
5秒前
garyaa发布了新的文献求助10
5秒前
5秒前
NexusExplorer应助奔奔采纳,获得10
5秒前
Orange应助Clean采纳,获得10
6秒前
Lucas应助ww采纳,获得10
6秒前
7秒前
ttttttuu完成签到,获得积分10
7秒前
8秒前
刘涵完成签到 ,获得积分10
8秒前
小马甲应助zhui采纳,获得10
8秒前
10完成签到,获得积分10
8秒前
8秒前
8秒前
Rainielove0215完成签到,获得积分0
9秒前
zz完成签到,获得积分10
10秒前
10秒前
kyle完成签到,获得积分10
12秒前
感性的凉面完成签到,获得积分20
12秒前
12秒前
请叫我风吹麦浪应助末岛采纳,获得10
13秒前
Aprial发布了新的文献求助30
13秒前
dd发布了新的文献求助10
13秒前
传奇3应助科研小菜鸟采纳,获得10
13秒前
在水一方应助惠惠采纳,获得10
14秒前
15秒前
冷艳贵公子王少完成签到 ,获得积分10
15秒前
KatzeBaliey完成签到,获得积分10
15秒前
15秒前
15秒前
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794