A multicenter study on the application of artificial intelligence radiological characteristics to predict prognosis after percutaneous nephrolithotomy

经皮肾镜取石术 医学 接收机工作特性 肾造口术 过度拟合 放射性武器 肾结石 肾功能 金标准(测试) 外科 经皮 放射科 泌尿科 内科学 人工智能 人工神经网络 泌尿系统 计算机科学
作者
Jian Hou,Xiang-Yang Wen,Genyi Qu,Wenwen Chen,Xian‐Yan Xu,Guojun Wu,Ren Ji,Genggeng Wei,Tuo Liang,Wenxiao Huang,Lin Xiong
出处
期刊:Frontiers in Endocrinology [Frontiers Media SA]
卷期号:14
标识
DOI:10.3389/fendo.2023.1184608
摘要

A model to predict preoperative outcomes after percutaneous nephrolithotomy (PCNL) with renal staghorn stones is developed to be an essential preoperative consultation tool.In this study, we constructed a predictive model for one-time stone clearance after PCNL for renal staghorn calculi, so as to predict the stone clearance rate of patients in one operation, and provide a reference direction for patients and clinicians.According to the 175 patients with renal staghorn stones undergoing PCNL at two centers, preoperative/postoperative variables were collected. After identifying characteristic variables using PCA analysis to avoid overfitting. A predictive model was developed for preoperative outcomes after PCNL in patients with renal staghorn stones. In addition, we repeatedly cross-validated their model's predictive efficacy and clinical application using data from two different centers.The study included 175 patients from two centers treated with PCNL. We used a training set and an external validation set. Radionics characteristics, deep migration learning, clinical characteristics, and DTL+Rad-signature were successfully constructed using machine learning based on patients' pre/postoperative imaging characteristics and clinical variables using minimum absolute shrinkage and selection operator algorithms. In this study, DTL-Rad signal was found to be the outstanding predictor of stone clearance in patients with renal deer antler-like stones treated by PCNL. The DTL+Rad signature showed good discriminatory ability in both the training and external validation groups with AUC values of 0.871 (95% CI, 0.800-0.942) and 0.744 (95% CI, 0.617-0.871). The decision curve demonstrated the radiographic model's clinical utility and illustrated specificities of 0.935 and 0.806, respectively.We found a prediction model combining imaging characteristics, neural networks, and clinical characteristics can be used as an effective preoperative prediction method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
药小博发布了新的文献求助10
刚刚
1秒前
jiang完成签到 ,获得积分10
1秒前
掬掬完成签到,获得积分10
1秒前
岩鹰完成签到,获得积分10
1秒前
瑾年发布了新的文献求助10
1秒前
欧阳小司完成签到,获得积分10
1秒前
2秒前
NBS完成签到,获得积分10
2秒前
无花果应助白诺言采纳,获得10
2秒前
田様应助yuguoqwq采纳,获得10
2秒前
秋秋儿完成签到,获得积分10
3秒前
15122303完成签到,获得积分10
3秒前
bob完成签到 ,获得积分10
3秒前
哈哈哈完成签到,获得积分10
3秒前
qiaokizhang完成签到,获得积分10
3秒前
Lillian完成签到,获得积分10
3秒前
zhao完成签到,获得积分10
4秒前
老实的安阳完成签到,获得积分20
4秒前
5秒前
yushanriqing完成签到,获得积分10
5秒前
舒克完成签到,获得积分10
5秒前
学术长颈鹿完成签到,获得积分10
6秒前
6秒前
djm完成签到,获得积分10
6秒前
6秒前
董甜梦完成签到,获得积分10
6秒前
6秒前
ziyue发布了新的文献求助10
7秒前
ANG发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
8秒前
zz完成签到,获得积分10
8秒前
xixia发布了新的文献求助10
8秒前
情怀应助fengzi151采纳,获得10
8秒前
MM完成签到 ,获得积分10
9秒前
努努发布了新的文献求助10
9秒前
SciGPT应助刘云采纳,获得10
9秒前
冬叶完成签到,获得积分10
10秒前
哈哈哈发布了新的文献求助10
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5698993
求助须知:如何正确求助?哪些是违规求助? 5128246
关于积分的说明 15223758
捐赠科研通 4853988
什么是DOI,文献DOI怎么找? 2604401
邀请新用户注册赠送积分活动 1555903
关于科研通互助平台的介绍 1514243