A multicenter study on the application of artificial intelligence radiological characteristics to predict prognosis after percutaneous nephrolithotomy

经皮肾镜取石术 医学 接收机工作特性 肾造口术 过度拟合 放射性武器 肾结石 肾功能 金标准(测试) 外科 经皮 放射科 泌尿科 内科学 人工智能 人工神经网络 计算机科学 泌尿系统
作者
Jian Hou,Xiang-Yang Wen,Genyi Qu,Wenwen Chen,Xian‐Yan Xu,Guojun Wu,Ren Ji,Genggeng Wei,Tuo Liang,Wenxiao Huang,Lin Xiong
出处
期刊:Frontiers in Endocrinology [Frontiers Media SA]
卷期号:14
标识
DOI:10.3389/fendo.2023.1184608
摘要

A model to predict preoperative outcomes after percutaneous nephrolithotomy (PCNL) with renal staghorn stones is developed to be an essential preoperative consultation tool.In this study, we constructed a predictive model for one-time stone clearance after PCNL for renal staghorn calculi, so as to predict the stone clearance rate of patients in one operation, and provide a reference direction for patients and clinicians.According to the 175 patients with renal staghorn stones undergoing PCNL at two centers, preoperative/postoperative variables were collected. After identifying characteristic variables using PCA analysis to avoid overfitting. A predictive model was developed for preoperative outcomes after PCNL in patients with renal staghorn stones. In addition, we repeatedly cross-validated their model's predictive efficacy and clinical application using data from two different centers.The study included 175 patients from two centers treated with PCNL. We used a training set and an external validation set. Radionics characteristics, deep migration learning, clinical characteristics, and DTL+Rad-signature were successfully constructed using machine learning based on patients' pre/postoperative imaging characteristics and clinical variables using minimum absolute shrinkage and selection operator algorithms. In this study, DTL-Rad signal was found to be the outstanding predictor of stone clearance in patients with renal deer antler-like stones treated by PCNL. The DTL+Rad signature showed good discriminatory ability in both the training and external validation groups with AUC values of 0.871 (95% CI, 0.800-0.942) and 0.744 (95% CI, 0.617-0.871). The decision curve demonstrated the radiographic model's clinical utility and illustrated specificities of 0.935 and 0.806, respectively.We found a prediction model combining imaging characteristics, neural networks, and clinical characteristics can be used as an effective preoperative prediction method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
厮人野完成签到,获得积分10
3秒前
科研通AI2S应助noobmaster采纳,获得10
4秒前
4秒前
大胆的夏天完成签到,获得积分10
6秒前
7秒前
Tong发布了新的文献求助10
10秒前
borg发布了新的文献求助10
11秒前
ooooo完成签到,获得积分10
12秒前
bkagyin应助任性的微笑采纳,获得30
12秒前
acadedog发布了新的文献求助10
13秒前
CipherSage应助CrazyPipa采纳,获得10
15秒前
毛豆应助一个小胖子采纳,获得10
17秒前
Jeffery发布了新的文献求助10
17秒前
17秒前
18秒前
19秒前
橘子完成签到,获得积分10
22秒前
聪慧海豚发布了新的文献求助10
23秒前
心珩发布了新的文献求助10
23秒前
24秒前
谢会会完成签到 ,获得积分10
25秒前
26秒前
纸芯完成签到 ,获得积分10
27秒前
27秒前
28秒前
丰知然应助姜丽采纳,获得10
28秒前
舒心的火龙果完成签到,获得积分10
30秒前
yihaiqin发布了新的文献求助10
32秒前
豌豆发布了新的文献求助10
32秒前
追寻紫安应助威武凡旋采纳,获得10
32秒前
zhengzehong完成签到,获得积分10
32秒前
F冯完成签到,获得积分10
32秒前
xixia发布了新的文献求助10
33秒前
qianqian发布了新的文献求助10
33秒前
银丿星辰完成签到,获得积分10
34秒前
逗小豆完成签到 ,获得积分10
38秒前
桐桐应助豌豆采纳,获得10
38秒前
41秒前
42秒前
LYL完成签到,获得积分10
43秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309867
求助须知:如何正确求助?哪些是违规求助? 2943043
关于积分的说明 8512407
捐赠科研通 2618126
什么是DOI,文献DOI怎么找? 1430834
科研通“疑难数据库(出版商)”最低求助积分说明 664324
邀请新用户注册赠送积分活动 649490