GFedKRL: Graph Federated Knowledge Re-Learning for Effective Molecular Property Prediction via Privacy Protection

计算机科学 独立同分布随机变量 聚类系数 图形 差别隐私 机器学习 聚类分析 人工智能 信息隐私 数据挖掘 理论计算机科学 计算机安全 数学 统计 随机变量
作者
Yeyan Ning,Jinyan Wang,De Li,Dongqi Yan,Xianxian Li
出处
期刊:Lecture Notes in Computer Science 卷期号:: 426-438
标识
DOI:10.1007/978-3-031-44213-1_36
摘要

Graph Neural Networks (GNNs) are one of the primary methods for molecular property prediction due to their ability to learn state-of-the-art level representations from graph-structured molecular data. In addition, the Federated Learning (FL) paradigm, which allows multiple ends to collaborate on machine learning training without sharing local data, is being considered for introduction to improve the performance of multiple ends. However, in FL, the molecular graph data among clients are not only Non-Independent Identically Distribution (Non-IID) but also skewed in quantity distribution. In this paper, we propose the GFedKRL framework to perform knowledge distillation and re-learning during the interaction between clients and servers in each cluster after clustering the graph embeddings uploaded. We also analyze the risk of privacy leakage in the GFedKRL and propose personalized local differential privacy to protect privacy while better controlling the amount of noise input and improving model performance. In addition, to resist the impact of noise data on the clients’ model, graph representation learning is enhanced by knowledge contrast learning at the local clients. Finally, our approach achieves better results in three experimental datasets compared with four public benchmark methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tourist发布了新的文献求助10
刚刚
刚刚
刚刚
1秒前
韶芸遥发布了新的文献求助10
1秒前
1秒前
1秒前
丘比特应助mmyyff采纳,获得50
1秒前
1秒前
1秒前
koko完成签到 ,获得积分10
2秒前
3秒前
3秒前
打打应助wuyun9653采纳,获得10
4秒前
正月初九完成签到,获得积分10
4秒前
浮游应助冬雪采纳,获得10
4秒前
吴鸿洋发布了新的文献求助10
5秒前
5秒前
依然发布了新的文献求助10
5秒前
Leon发布了新的文献求助10
5秒前
xu发布了新的文献求助10
6秒前
6秒前
马尼拉完成签到,获得积分10
6秒前
y1439938345关注了科研通微信公众号
6秒前
6秒前
淡淡向卉发布了新的文献求助20
6秒前
科研通AI6应助zyx采纳,获得10
7秒前
7秒前
充电宝应助风中小笼包采纳,获得10
7秒前
乐乐应助超帅的天曼采纳,获得10
7秒前
8秒前
啊哈哈哈哈哈哈哈完成签到,获得积分10
9秒前
我是老大应助聪明尔白采纳,获得10
9秒前
tina119完成签到,获得积分10
9秒前
9秒前
SciGPT应助yy采纳,获得10
10秒前
专一的妙海完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5262149
求助须知:如何正确求助?哪些是违规求助? 4423231
关于积分的说明 13769006
捐赠科研通 4297780
什么是DOI,文献DOI怎么找? 2358130
邀请新用户注册赠送积分活动 1354509
关于科研通互助平台的介绍 1315669