计算机科学
稳健性(进化)
灵活性(工程)
构造(python库)
事件(粒子物理)
控制(管理)
二次方程
主动安全
分布式计算
实时计算
控制理论(社会学)
控制工程
工程类
计算机网络
人工智能
数学
汽车工程
生物化学
化学
统计
物理
几何学
量子力学
基因
作者
Anni Li,Christos G. Cassandras,Wei Xiao
出处
期刊:Cornell University - arXiv
日期:2023-01-01
标识
DOI:10.48550/arxiv.2310.00534
摘要
This paper studies safe driving interactions between Human-Driven Vehicles (HDVs) and Connected and Automated Vehicles (CAVs) in mixed traffic where the dynamics and control policies of HDVs are unknown and hard to predict. In order to address this challenge, we employ event-triggered Control Barrier Functions (CBFs) to estimate the HDV model online, construct data-driven and state-feedback safety controllers, and transform constrained optimal control problems for CAVs into a sequence of event-triggered quadratic programs. We show that we can ensure collision-free between HDVs and CAVs and demonstrate the robustness and flexibility of our framework on different types of human drivers in lane-changing scenarios while guaranteeing safety with human-in-the-loop interactions.
科研通智能强力驱动
Strongly Powered by AbleSci AI