已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Adversarial Deep Learning based Dampster–Shafer data fusion model for intelligent transportation system

计算机科学 对抗制 人工智能 交通标志识别 深度学习 机器学习 杠杆(统计) 云计算 传感器融合 符号(数学) 数学 交通标志 操作系统 数学分析
作者
Senthil Murugan Nagarajan,Ganesh Gopal Devarajan,Ramana T.V.,Asha Jerlin M.,Ali Kashif Bashir,Yasser D. Al‐Otaibi
出处
期刊:Information Fusion [Elsevier]
卷期号:102: 102050-102050 被引量:6
标识
DOI:10.1016/j.inffus.2023.102050
摘要

Intelligent Transportation Systems (ITS) have revolutionized transportation by incorporating advanced technologies for efficient and safe mobility. However, these systems face challenges ensuring security and resilience against adversarial attacks. This research addresses these challenges and introduces a novel Dampster–Shafer data fusion-based Adversarial Deep Learning (DS-ADL) Model for ITS in fog cloud environments. Our proposed model focuses on three levels of adversarial attacks: original image level, feature level, and decision level. Adversarial examples are generated at each level to evaluate the system's vulnerability comprehensively. To enhance the system's capabilities, we leverage the power of several vital components. Firstly, we employ Dempster–Shafer-based Multimodal Sensor Fusion, enabling the fusion of information from multiple sensors for improved scene understanding. This fusion approach enhances the system's perception and decision-making abilities. For feature extraction and classification, we utilize ResNet 101, a deep learning architecture known for its effectiveness in computer vision tasks. We introduced a novel Monomodal Multidimensional Gaussian Model (MMGM-DD) based Adversarial Detection approach to detect adversarial examples. This detection mechanism enhances the system's ability to identify and mitigate adversarial attacks in real-time. Additionally, we incorporate the Defensive Distillation method for adversarial training, which trains the model to be robust against attacks by exposing it to adversarial examples during the training process. To evaluate the performance of our proposed model, we utilize two datasets: Google Speech Command version 0.01 and the German Traffic Sign Recognition Benchmark (GTSRB). Evaluation metrics include latency delay and computation time (fog–cloud), accuracy, MSE, loss, and F-score for attack detection and defense. The results and discussions demonstrate the effectiveness of our Dampster–Shafer data fusion-based Adversarial Deep Learning Model in enhancing the robustness and security of ITS in fog–cloud environments. The model's ability to detect and defend against adversarial attacks while maintaining low-latency fog–cloud operations highlights its potential for real-world deployment in ITS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123发布了新的文献求助10
2秒前
Ywffffff完成签到 ,获得积分10
2秒前
月屿完成签到 ,获得积分10
3秒前
wei jie完成签到 ,获得积分10
6秒前
沐偶人完成签到,获得积分10
7秒前
小左完成签到 ,获得积分10
9秒前
okay好好完成签到 ,获得积分10
13秒前
明亮的溪灵完成签到,获得积分10
14秒前
科研通AI2S应助沐偶人采纳,获得10
16秒前
17秒前
无花果应助11112233采纳,获得10
17秒前
18秒前
穆紫应助科研通管家采纳,获得30
19秒前
深情安青应助科研通管家采纳,获得10
19秒前
烟花应助科研通管家采纳,获得10
19秒前
爆米花应助科研通管家采纳,获得10
19秒前
霉小欧应助科研通管家采纳,获得10
19秒前
明亮若枫发布了新的文献求助10
21秒前
大雄12138完成签到 ,获得积分10
21秒前
迷人世开完成签到,获得积分10
22秒前
青岚完成签到 ,获得积分10
23秒前
hyyy完成签到 ,获得积分10
26秒前
26秒前
阿东c完成签到 ,获得积分10
28秒前
AA完成签到,获得积分20
28秒前
Easypass完成签到 ,获得积分10
28秒前
慕青应助Mr鹿采纳,获得10
30秒前
AA发布了新的文献求助10
32秒前
千纸鹤完成签到 ,获得积分10
36秒前
舍曲林完成签到,获得积分10
38秒前
bruce-gao完成签到,获得积分10
38秒前
姜落完成签到,获得积分10
38秒前
小张完成签到 ,获得积分10
38秒前
赘婿应助姜落采纳,获得10
41秒前
眯眯眼的山柳完成签到 ,获得积分10
43秒前
可久斯基完成签到 ,获得积分10
45秒前
丘比特应助kerri采纳,获得10
46秒前
武大帝77完成签到 ,获得积分10
46秒前
46秒前
47秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
XAFS for Everyone (2nd Edition) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3133798
求助须知:如何正确求助?哪些是违规求助? 2784777
关于积分的说明 7768435
捐赠科研通 2440073
什么是DOI,文献DOI怎么找? 1297175
科研通“疑难数据库(出版商)”最低求助积分说明 624888
版权声明 600791