Adversarial Deep Learning based Dampster–Shafer data fusion model for intelligent transportation system

计算机科学 对抗制 人工智能 交通标志识别 深度学习 机器学习 杠杆(统计) 云计算 传感器融合 符号(数学) 数学 交通标志 操作系统 数学分析
作者
Senthil Murugan Nagarajan,Ganesh Gopal Devarajan,Ramana T.V.,Asha Jerlin M.,Ali Kashif Bashir,Yasser D. Al‐Otaibi
出处
期刊:Information Fusion [Elsevier]
卷期号:102: 102050-102050 被引量:6
标识
DOI:10.1016/j.inffus.2023.102050
摘要

Intelligent Transportation Systems (ITS) have revolutionized transportation by incorporating advanced technologies for efficient and safe mobility. However, these systems face challenges ensuring security and resilience against adversarial attacks. This research addresses these challenges and introduces a novel Dampster–Shafer data fusion-based Adversarial Deep Learning (DS-ADL) Model for ITS in fog cloud environments. Our proposed model focuses on three levels of adversarial attacks: original image level, feature level, and decision level. Adversarial examples are generated at each level to evaluate the system's vulnerability comprehensively. To enhance the system's capabilities, we leverage the power of several vital components. Firstly, we employ Dempster–Shafer-based Multimodal Sensor Fusion, enabling the fusion of information from multiple sensors for improved scene understanding. This fusion approach enhances the system's perception and decision-making abilities. For feature extraction and classification, we utilize ResNet 101, a deep learning architecture known for its effectiveness in computer vision tasks. We introduced a novel Monomodal Multidimensional Gaussian Model (MMGM-DD) based Adversarial Detection approach to detect adversarial examples. This detection mechanism enhances the system's ability to identify and mitigate adversarial attacks in real-time. Additionally, we incorporate the Defensive Distillation method for adversarial training, which trains the model to be robust against attacks by exposing it to adversarial examples during the training process. To evaluate the performance of our proposed model, we utilize two datasets: Google Speech Command version 0.01 and the German Traffic Sign Recognition Benchmark (GTSRB). Evaluation metrics include latency delay and computation time (fog–cloud), accuracy, MSE, loss, and F-score for attack detection and defense. The results and discussions demonstrate the effectiveness of our Dampster–Shafer data fusion-based Adversarial Deep Learning Model in enhancing the robustness and security of ITS in fog–cloud environments. The model's ability to detect and defend against adversarial attacks while maintaining low-latency fog–cloud operations highlights its potential for real-world deployment in ITS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
苹果煎饼发布了新的文献求助10
1秒前
ai77qi发布了新的文献求助10
1秒前
2秒前
研友_VZG7GZ应助zh采纳,获得10
2秒前
2秒前
3秒前
金磊完成签到,获得积分10
3秒前
hailiangzheng发布了新的文献求助10
3秒前
传奇3应助调皮帆布鞋采纳,获得10
4秒前
percy完成签到 ,获得积分10
4秒前
4秒前
林小雨发布了新的文献求助10
5秒前
Bellona完成签到,获得积分10
5秒前
清嘉完成签到,获得积分10
5秒前
ZZY完成签到,获得积分10
6秒前
6秒前
魁梧的钧发布了新的文献求助20
6秒前
Fishchips发布了新的文献求助10
6秒前
6秒前
SciGPT应助tS717采纳,获得10
7秒前
自觉的涵易完成签到 ,获得积分10
7秒前
Hello应助自由南珍采纳,获得10
8秒前
苹果煎饼完成签到,获得积分10
9秒前
9秒前
杨小冬发布了新的文献求助10
9秒前
倒霉蛋完成签到,获得积分10
10秒前
庄严发布了新的文献求助10
10秒前
2401发布了新的文献求助10
10秒前
10秒前
10秒前
zhaoqing完成签到,获得积分10
11秒前
11秒前
充电宝应助han采纳,获得10
12秒前
13秒前
ajiduo发布了新的文献求助10
14秒前
聿潇发布了新的文献求助10
15秒前
15秒前
华枝春满发布了新的文献求助10
15秒前
Islet1810发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5406668
求助须知:如何正确求助?哪些是违规求助? 4524470
关于积分的说明 14098590
捐赠科研通 4438297
什么是DOI,文献DOI怎么找? 2436104
邀请新用户注册赠送积分活动 1428223
关于科研通互助平台的介绍 1406294