Adversarial Deep Learning based Dampster–Shafer data fusion model for intelligent transportation system

计算机科学 对抗制 人工智能 交通标志识别 深度学习 机器学习 杠杆(统计) 云计算 传感器融合 符号(数学) 数学 交通标志 操作系统 数学分析
作者
Senthil Murugan Nagarajan,Ganesh Gopal Devarajan,Ramana T.V.,Asha Jerlin M.,Ali Kashif Bashir,Yasser D. Al‐Otaibi
出处
期刊:Information Fusion [Elsevier BV]
卷期号:102: 102050-102050 被引量:6
标识
DOI:10.1016/j.inffus.2023.102050
摘要

Intelligent Transportation Systems (ITS) have revolutionized transportation by incorporating advanced technologies for efficient and safe mobility. However, these systems face challenges ensuring security and resilience against adversarial attacks. This research addresses these challenges and introduces a novel Dampster–Shafer data fusion-based Adversarial Deep Learning (DS-ADL) Model for ITS in fog cloud environments. Our proposed model focuses on three levels of adversarial attacks: original image level, feature level, and decision level. Adversarial examples are generated at each level to evaluate the system's vulnerability comprehensively. To enhance the system's capabilities, we leverage the power of several vital components. Firstly, we employ Dempster–Shafer-based Multimodal Sensor Fusion, enabling the fusion of information from multiple sensors for improved scene understanding. This fusion approach enhances the system's perception and decision-making abilities. For feature extraction and classification, we utilize ResNet 101, a deep learning architecture known for its effectiveness in computer vision tasks. We introduced a novel Monomodal Multidimensional Gaussian Model (MMGM-DD) based Adversarial Detection approach to detect adversarial examples. This detection mechanism enhances the system's ability to identify and mitigate adversarial attacks in real-time. Additionally, we incorporate the Defensive Distillation method for adversarial training, which trains the model to be robust against attacks by exposing it to adversarial examples during the training process. To evaluate the performance of our proposed model, we utilize two datasets: Google Speech Command version 0.01 and the German Traffic Sign Recognition Benchmark (GTSRB). Evaluation metrics include latency delay and computation time (fog–cloud), accuracy, MSE, loss, and F-score for attack detection and defense. The results and discussions demonstrate the effectiveness of our Dampster–Shafer data fusion-based Adversarial Deep Learning Model in enhancing the robustness and security of ITS in fog–cloud environments. The model's ability to detect and defend against adversarial attacks while maintaining low-latency fog–cloud operations highlights its potential for real-world deployment in ITS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助Polling采纳,获得10
刚刚
Criminology34应助MMTI采纳,获得10
刚刚
朱朱朱完成签到,获得积分10
刚刚
1秒前
北风完成签到,获得积分10
1秒前
方俊驰完成签到,获得积分10
1秒前
1秒前
1秒前
颜十三发布了新的文献求助10
3秒前
科目三应助青木蓝采纳,获得10
3秒前
去瞧瞧发布了新的文献求助10
3秒前
周凡淇发布了新的文献求助30
4秒前
Ryuu发布了新的文献求助30
4秒前
NIO发布了新的文献求助10
6秒前
6秒前
一一发布了新的文献求助10
6秒前
6秒前
WHB完成签到,获得积分10
7秒前
Asdaf完成签到,获得积分10
7秒前
XY发布了新的文献求助10
7秒前
Li应助彭十采纳,获得30
7秒前
冷酷尔琴发布了新的文献求助10
7秒前
钟程飞完成签到 ,获得积分10
8秒前
Hello应助颜十三采纳,获得10
8秒前
yyu完成签到,获得积分20
9秒前
浑续发布了新的文献求助10
9秒前
毛通完成签到,获得积分10
10秒前
aixx应助annaanna采纳,获得10
10秒前
11秒前
11秒前
11秒前
Jasper应助去瞧瞧采纳,获得10
12秒前
Sanqi完成签到,获得积分10
12秒前
小长夜发布了新的文献求助20
12秒前
冷酷尔琴完成签到,获得积分10
13秒前
小二郎应助布丁采纳,获得10
13秒前
元白发布了新的文献求助10
13秒前
14秒前
sun完成签到,获得积分10
14秒前
hml123发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5258445
求助须知:如何正确求助?哪些是违规求助? 4420393
关于积分的说明 13760182
捐赠科研通 4293953
什么是DOI,文献DOI怎么找? 2356224
邀请新用户注册赠送积分活动 1352546
关于科研通互助平台的介绍 1313340