亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Adversarial Deep Learning based Dampster–Shafer data fusion model for intelligent transportation system

计算机科学 对抗制 人工智能 交通标志识别 深度学习 机器学习 杠杆(统计) 云计算 传感器融合 符号(数学) 数学 操作系统 数学分析 交通标志
作者
Senthil Murugan Nagarajan,Ganesh Gopal Devarajan,Ramana T.V.,Asha Jerlin M.,Ali Kashif Bashir,Yasser D. Al‐Otaibi
出处
期刊:Information Fusion [Elsevier]
卷期号:102: 102050-102050 被引量:26
标识
DOI:10.1016/j.inffus.2023.102050
摘要

Intelligent Transportation Systems (ITS) have revolutionized transportation by incorporating advanced technologies for efficient and safe mobility. However, these systems face challenges ensuring security and resilience against adversarial attacks. This research addresses these challenges and introduces a novel Dampster–Shafer data fusion-based Adversarial Deep Learning (DS-ADL) Model for ITS in fog cloud environments. Our proposed model focuses on three levels of adversarial attacks: original image level, feature level, and decision level. Adversarial examples are generated at each level to evaluate the system's vulnerability comprehensively. To enhance the system's capabilities, we leverage the power of several vital components. Firstly, we employ Dempster–Shafer-based Multimodal Sensor Fusion, enabling the fusion of information from multiple sensors for improved scene understanding. This fusion approach enhances the system's perception and decision-making abilities. For feature extraction and classification, we utilize ResNet 101, a deep learning architecture known for its effectiveness in computer vision tasks. We introduced a novel Monomodal Multidimensional Gaussian Model (MMGM-DD) based Adversarial Detection approach to detect adversarial examples. This detection mechanism enhances the system's ability to identify and mitigate adversarial attacks in real-time. Additionally, we incorporate the Defensive Distillation method for adversarial training, which trains the model to be robust against attacks by exposing it to adversarial examples during the training process. To evaluate the performance of our proposed model, we utilize two datasets: Google Speech Command version 0.01 and the German Traffic Sign Recognition Benchmark (GTSRB). Evaluation metrics include latency delay and computation time (fog–cloud), accuracy, MSE, loss, and F-score for attack detection and defense. The results and discussions demonstrate the effectiveness of our Dampster–Shafer data fusion-based Adversarial Deep Learning Model in enhancing the robustness and security of ITS in fog–cloud environments. The model's ability to detect and defend against adversarial attacks while maintaining low-latency fog–cloud operations highlights its potential for real-world deployment in ITS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Cuisine完成签到 ,获得积分10
7秒前
别斑秃了完成签到 ,获得积分10
11秒前
无语伦比完成签到 ,获得积分10
14秒前
niceweiwei完成签到 ,获得积分10
34秒前
TangMlan完成签到 ,获得积分10
34秒前
37秒前
Ming发布了新的文献求助10
41秒前
48秒前
nglmy77完成签到 ,获得积分10
48秒前
Xjx6519发布了新的文献求助30
53秒前
1分钟前
Li发布了新的文献求助10
1分钟前
充电宝应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
gexzygg应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
gexzygg应助科研通管家采纳,获得10
1分钟前
小马哥完成签到,获得积分10
1分钟前
1分钟前
Li发布了新的文献求助10
1分钟前
bless完成签到 ,获得积分10
1分钟前
神明完成签到 ,获得积分10
1分钟前
科研通AI2S应助阔达的太阳采纳,获得10
2分钟前
JamesPei应助圆润润呐采纳,获得10
2分钟前
科研通AI6应助Li采纳,获得30
2分钟前
强健的忆雪完成签到 ,获得积分10
2分钟前
211JZH完成签到 ,获得积分10
2分钟前
ceeray23应助科研通管家采纳,获得10
3分钟前
gexzygg应助科研通管家采纳,获得10
3分钟前
小张完成签到 ,获得积分10
3分钟前
伶俐海安完成签到 ,获得积分10
3分钟前
年鱼精完成签到 ,获得积分10
3分钟前
科研通AI6应助Xjx6519采纳,获得10
3分钟前
科研通AI6应助Li采纳,获得10
3分钟前
4分钟前
爱听歌的半凡完成签到,获得积分10
4分钟前
帅气的曼雁完成签到 ,获得积分10
4分钟前
ensue关注了科研通微信公众号
4分钟前
ensue发布了新的文献求助10
4分钟前
Xjx6519发布了新的文献求助10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5558432
求助须知:如何正确求助?哪些是违规求助? 4643499
关于积分的说明 14671155
捐赠科研通 4584795
什么是DOI,文献DOI怎么找? 2515191
邀请新用户注册赠送积分活动 1489232
关于科研通互助平台的介绍 1459827