清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Adversarial Deep Learning based Dampster–Shafer data fusion model for intelligent transportation system

计算机科学 对抗制 人工智能 交通标志识别 深度学习 机器学习 杠杆(统计) 云计算 传感器融合 符号(数学) 数学 操作系统 数学分析 交通标志
作者
Senthil Murugan Nagarajan,Ganesh Gopal Devarajan,Ramana T.V.,Asha Jerlin M.,Ali Kashif Bashir,Yasser D. Al‐Otaibi
出处
期刊:Information Fusion [Elsevier]
卷期号:102: 102050-102050 被引量:26
标识
DOI:10.1016/j.inffus.2023.102050
摘要

Intelligent Transportation Systems (ITS) have revolutionized transportation by incorporating advanced technologies for efficient and safe mobility. However, these systems face challenges ensuring security and resilience against adversarial attacks. This research addresses these challenges and introduces a novel Dampster–Shafer data fusion-based Adversarial Deep Learning (DS-ADL) Model for ITS in fog cloud environments. Our proposed model focuses on three levels of adversarial attacks: original image level, feature level, and decision level. Adversarial examples are generated at each level to evaluate the system's vulnerability comprehensively. To enhance the system's capabilities, we leverage the power of several vital components. Firstly, we employ Dempster–Shafer-based Multimodal Sensor Fusion, enabling the fusion of information from multiple sensors for improved scene understanding. This fusion approach enhances the system's perception and decision-making abilities. For feature extraction and classification, we utilize ResNet 101, a deep learning architecture known for its effectiveness in computer vision tasks. We introduced a novel Monomodal Multidimensional Gaussian Model (MMGM-DD) based Adversarial Detection approach to detect adversarial examples. This detection mechanism enhances the system's ability to identify and mitigate adversarial attacks in real-time. Additionally, we incorporate the Defensive Distillation method for adversarial training, which trains the model to be robust against attacks by exposing it to adversarial examples during the training process. To evaluate the performance of our proposed model, we utilize two datasets: Google Speech Command version 0.01 and the German Traffic Sign Recognition Benchmark (GTSRB). Evaluation metrics include latency delay and computation time (fog–cloud), accuracy, MSE, loss, and F-score for attack detection and defense. The results and discussions demonstrate the effectiveness of our Dampster–Shafer data fusion-based Adversarial Deep Learning Model in enhancing the robustness and security of ITS in fog–cloud environments. The model's ability to detect and defend against adversarial attacks while maintaining low-latency fog–cloud operations highlights its potential for real-world deployment in ITS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助niko采纳,获得10
1秒前
SciGPT应助niko采纳,获得10
1秒前
充电宝应助niko采纳,获得10
1秒前
所所应助niko采纳,获得10
1秒前
李健的粉丝团团长应助niko采纳,获得10
1秒前
桐桐应助niko采纳,获得10
1秒前
orixero应助niko采纳,获得10
2秒前
NexusExplorer应助niko采纳,获得10
2秒前
Orange应助niko采纳,获得10
2秒前
香蕉觅云应助niko采纳,获得10
2秒前
消炎药发布了新的文献求助10
3秒前
Akim应助niko采纳,获得10
7秒前
英俊的铭应助niko采纳,获得10
7秒前
英俊的铭应助niko采纳,获得10
7秒前
bkagyin应助niko采纳,获得10
7秒前
FashionBoy应助niko采纳,获得10
7秒前
科目三应助niko采纳,获得10
7秒前
852应助niko采纳,获得30
7秒前
李健应助niko采纳,获得10
7秒前
爆米花应助niko采纳,获得10
7秒前
天天快乐应助niko采纳,获得10
7秒前
科研通AI2S应助CRUSADER采纳,获得10
9秒前
FashionBoy应助niko采纳,获得10
13秒前
领导范儿应助niko采纳,获得10
13秒前
乐乐应助niko采纳,获得10
13秒前
星辰大海应助niko采纳,获得10
13秒前
搜集达人应助niko采纳,获得50
13秒前
隐形曼青应助niko采纳,获得10
13秒前
李健应助niko采纳,获得10
13秒前
Akim应助niko采纳,获得10
13秒前
SciGPT应助niko采纳,获得10
13秒前
脑洞疼应助niko采纳,获得10
13秒前
Criminology34应助科研通管家采纳,获得10
17秒前
Criminology34应助科研通管家采纳,获得10
17秒前
Criminology34应助科研通管家采纳,获得10
17秒前
消炎药完成签到,获得积分10
20秒前
常有李完成签到,获得积分10
52秒前
两个榴莲完成签到,获得积分0
56秒前
bastien完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nonlinear Problems of Elasticity 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534355
求助须知:如何正确求助?哪些是违规求助? 4622348
关于积分的说明 14582572
捐赠科研通 4562591
什么是DOI,文献DOI怎么找? 2500254
邀请新用户注册赠送积分活动 1479794
关于科研通互助平台的介绍 1450981