Adversarial Deep Learning based Dampster–Shafer data fusion model for intelligent transportation system

计算机科学 对抗制 人工智能 交通标志识别 深度学习 机器学习 杠杆(统计) 云计算 传感器融合 符号(数学) 数学 操作系统 数学分析 交通标志
作者
Senthil Murugan Nagarajan,Ganesh Gopal Devarajan,Ramana T.V.,Asha Jerlin M.,Ali Kashif Bashir,Yasser D. Al‐Otaibi
出处
期刊:Information Fusion [Elsevier]
卷期号:102: 102050-102050 被引量:26
标识
DOI:10.1016/j.inffus.2023.102050
摘要

Intelligent Transportation Systems (ITS) have revolutionized transportation by incorporating advanced technologies for efficient and safe mobility. However, these systems face challenges ensuring security and resilience against adversarial attacks. This research addresses these challenges and introduces a novel Dampster–Shafer data fusion-based Adversarial Deep Learning (DS-ADL) Model for ITS in fog cloud environments. Our proposed model focuses on three levels of adversarial attacks: original image level, feature level, and decision level. Adversarial examples are generated at each level to evaluate the system's vulnerability comprehensively. To enhance the system's capabilities, we leverage the power of several vital components. Firstly, we employ Dempster–Shafer-based Multimodal Sensor Fusion, enabling the fusion of information from multiple sensors for improved scene understanding. This fusion approach enhances the system's perception and decision-making abilities. For feature extraction and classification, we utilize ResNet 101, a deep learning architecture known for its effectiveness in computer vision tasks. We introduced a novel Monomodal Multidimensional Gaussian Model (MMGM-DD) based Adversarial Detection approach to detect adversarial examples. This detection mechanism enhances the system's ability to identify and mitigate adversarial attacks in real-time. Additionally, we incorporate the Defensive Distillation method for adversarial training, which trains the model to be robust against attacks by exposing it to adversarial examples during the training process. To evaluate the performance of our proposed model, we utilize two datasets: Google Speech Command version 0.01 and the German Traffic Sign Recognition Benchmark (GTSRB). Evaluation metrics include latency delay and computation time (fog–cloud), accuracy, MSE, loss, and F-score for attack detection and defense. The results and discussions demonstrate the effectiveness of our Dampster–Shafer data fusion-based Adversarial Deep Learning Model in enhancing the robustness and security of ITS in fog–cloud environments. The model's ability to detect and defend against adversarial attacks while maintaining low-latency fog–cloud operations highlights its potential for real-world deployment in ITS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
专注的问寒应助Seona采纳,获得20
1秒前
大个应助xujingyi采纳,获得10
2秒前
biubiubiu发布了新的文献求助10
2秒前
劉劉完成签到 ,获得积分10
3秒前
xz发布了新的文献求助20
5秒前
univ完成签到,获得积分10
6秒前
笑傲江湖完成签到,获得积分10
6秒前
8秒前
kid完成签到,获得积分10
8秒前
Jasper应助123456采纳,获得30
8秒前
lc发布了新的文献求助10
8秒前
8秒前
小白完成签到 ,获得积分10
8秒前
研友_VZG7GZ应助独特的高山采纳,获得10
9秒前
9秒前
10秒前
10秒前
温暖发布了新的文献求助10
12秒前
kid发布了新的文献求助10
12秒前
Dskelf完成签到,获得积分10
13秒前
13秒前
量子星尘发布了新的文献求助10
14秒前
111给111的求助进行了留言
15秒前
123456完成签到 ,获得积分10
15秒前
香蕉从寒完成签到,获得积分10
18秒前
19秒前
小二郎应助坦率老头采纳,获得10
19秒前
19秒前
利于蓄力完成签到,获得积分10
19秒前
20秒前
20秒前
21秒前
22秒前
22秒前
22秒前
23秒前
利于蓄力发布了新的文献求助10
23秒前
sanjun完成签到,获得积分10
23秒前
苏苏发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646490
求助须知:如何正确求助?哪些是违规求助? 4771445
关于积分的说明 15035283
捐赠科研通 4805288
什么是DOI,文献DOI怎么找? 2569581
邀请新用户注册赠送积分活动 1526573
关于科研通互助平台的介绍 1485858