清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

AutoML: advanced tool for mining multivariate plant traits

自动化 计算机科学 机器学习 过程(计算) 人工智能 工作流程 超参数 可扩展性 接口 数据科学 生物 数据库 工程类 机械工程 计算机硬件 操作系统
作者
M Shoaib,Neelesh Sharma,Lars Kotthoff,Marius Lindauer,Surya Kant
出处
期刊:Trends in Plant Science [Elsevier]
卷期号:28 (12): 1451-1452
标识
DOI:10.1016/j.tplants.2023.09.008
摘要

Automated machine learning (AutoML) is an automated version of machine learning (ML) that has the potential to become an integral part of plant science research for dealing with large and complex multivariate datasets. AutoML is rapidly advancing and has the potential to revolutionise the development and deployment of ML as it fully automates the ML process, from selecting the appropriate model and optimising its hyperparameters, to handling data preparation in some instances. This automation saves time and effort, enhances model quality, and increases its usability for novice users such as plant scientists. AutoML excels in extracting meaningful features from diverse datasets in plant science domains, enhancing understanding of precision agriculture, crop breeding, and disease forecasting; estimating abiotic stresses, molecular genetics, and proteomics analysis; and yield prediction. As AutoML tools evolve, they will become even more powerful and user-friendly, accelerating innovation in plant science. AutoML automates feature engineering and scalability, making it easier to extract meaningful information from complex multivariate and large biological datasets. Efficiency is increased by automating repetitive tasks, reducing errors, and automatically selecting the best features and models for improved accuracy. Reproducibility is improved by generating a detailed report of the model-building and evaluation process. ML is democratised by providing a drag-and-drop interface that eliminates the need for programming skills, making ML accessible and usable for beginners. It integrates seamlessly with existing tools and pipelines, streamlining research workflows and simplifying model building. Interpreting AutoML, particularly deep learning models, can occasionally present challenges in gaining insights from data, like traditional ML. Therefore, consideration of interpretable AutoML tools may be required in some projects. In some cases, AutoML training and implementation can be challenged by limited or missing data in plant science. It lacks the same customisation or flexibility as coding-based approaches, necessitating careful evaluation and domain-specific knowledge. Most AutoML platforms are versatile and can be used for plant science research. Some are already being used in this field, but others still need to be tested, deployed, and evaluated in the specific plant science domain. No interests are declared.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助翟半仙采纳,获得10
13秒前
墨言无殇完成签到,获得积分10
1分钟前
huvy完成签到 ,获得积分10
1分钟前
内向的白玉完成签到 ,获得积分10
4分钟前
4分钟前
翟半仙发布了新的文献求助10
4分钟前
4分钟前
turui完成签到 ,获得积分10
4分钟前
jyy应助晶杰采纳,获得10
4分钟前
脑洞疼应助科研通管家采纳,获得10
5分钟前
翟半仙发布了新的文献求助20
5分钟前
fuueer完成签到 ,获得积分10
5分钟前
lixuebin完成签到 ,获得积分10
5分钟前
上官若男应助LJYang采纳,获得30
5分钟前
翟半仙完成签到,获得积分10
5分钟前
gy完成签到,获得积分10
6分钟前
华仔应助去去去去采纳,获得30
7分钟前
7分钟前
7分钟前
去去去去发布了新的文献求助30
8分钟前
方琼燕完成签到 ,获得积分10
8分钟前
段誉完成签到 ,获得积分10
8分钟前
yanhua完成签到,获得积分20
8分钟前
8分钟前
桐桐应助Mine采纳,获得10
8分钟前
8分钟前
8分钟前
Mine发布了新的文献求助10
8分钟前
9分钟前
Ava应助Mine采纳,获得50
9分钟前
晶杰发布了新的文献求助10
10分钟前
hongxuezhi完成签到,获得积分10
11分钟前
11分钟前
Mine发布了新的文献求助50
11分钟前
晶杰完成签到 ,获得积分10
12分钟前
大个应助雅樱采纳,获得10
12分钟前
Hello应助要减肥的婷冉采纳,获得10
12分钟前
要减肥的婷冉完成签到,获得积分10
12分钟前
12分钟前
Mine完成签到,获得积分10
12分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142742
求助须知:如何正确求助?哪些是违规求助? 2793633
关于积分的说明 7807045
捐赠科研通 2449903
什么是DOI,文献DOI怎么找? 1303531
科研通“疑难数据库(出版商)”最低求助积分说明 626959
版权声明 601335