已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Neuromorphic computing with hybrid CNN–Stochastic Reservoir for time series WiFi based human activity recognition

计算机科学 卷积神经网络 特征(语言学) 神经形态工程学 人工智能 模式识别(心理学) 频道(广播) 信号(编程语言) 人工神经网络 实时计算 计算机网络 哲学 语言学 程序设计语言
作者
Chia Yee Saw,Yan Chiew Wong
出处
期刊:Computers & Electrical Engineering [Elsevier]
卷期号:111: 108917-108917
标识
DOI:10.1016/j.compeleceng.2023.108917
摘要

Wi-Fi Channel State Information (CSI) based human activity recognition (HAR) which using channel disturbances caused by signal reflection is a novel way of environment sensing and motion recognition. The collected channels characteristics are heavily influenced by the environment, human activity patterns and subject’s weight and height. These signal variations reflected from body components are mainly affected by static multipath effects comprises random noise and behave differently in individuals, and thus an active field of research. To reach further for achieving automated real-time classification, lower computational cost and easy adaptability to hardware are necessary. In this work, a CSI-based HAR with hybrid framework, Convolutional Neural Network (CNN)-Stochastic Reservoir (SR) (CNN-SR) has been proposed, enabling a subject adaptable and more efficient hardware implementation with minimal computational complexity. A subcarrier correlation matrix is first computed and portrayed in image without preprocessing based on the reflection of the raw CSI signal induced by human activities at regular intervals, allowing visual observation of whole pattern changes. The time-based features are subsequently extracted through CNN and these feature arrays are then feed into SR which based on stochastic spiking neural network (SSNN) in simple cycle reservoir architecture for template matching. SR offers attractive power savings over typical von Neumann systems, by doing stochastic computations. The proposed method has also been demonstrated that is capable for HAR based on partially captured signals. The signal pattern of each segment can be observed in a single sight and then employed for person-to-person template recognition. This enables HAR with minimal computational complexity and solving the inter-person variability concerns. The results demonstrate that the proposed CNN-SR achieves impressive performance in recognizing human activities and surpasses existing models with an average accuracy of 93.49%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hehe完成签到,获得积分20
刚刚
大鼻子的新四岁完成签到,获得积分10
3秒前
yuan完成签到,获得积分10
3秒前
三千完成签到,获得积分10
5秒前
hehe发布了新的文献求助10
5秒前
酷波er应助kk采纳,获得10
11秒前
搬砖王发布了新的文献求助10
12秒前
13秒前
小葛完成签到,获得积分10
14秒前
de完成签到,获得积分10
15秒前
Heaven完成签到,获得积分10
17秒前
可爱的函函应助三千采纳,获得10
19秒前
21秒前
Criminology34应助悦耳的易梦采纳,获得10
24秒前
kk发布了新的文献求助10
26秒前
害羞的天真完成签到 ,获得积分10
35秒前
eing关注了科研通微信公众号
35秒前
qifei完成签到 ,获得积分10
36秒前
RE完成签到 ,获得积分10
37秒前
高高妙梦完成签到 ,获得积分10
41秒前
kk完成签到,获得积分10
41秒前
Ashan完成签到 ,获得积分10
47秒前
light完成签到,获得积分10
49秒前
古今奇观完成签到 ,获得积分10
49秒前
50秒前
风趣的梦露完成签到 ,获得积分10
51秒前
小小鱼完成签到 ,获得积分10
51秒前
53秒前
light发布了新的文献求助10
55秒前
56秒前
十三发布了新的文献求助10
56秒前
小易发布了新的文献求助10
59秒前
甜甜的以筠完成签到 ,获得积分10
1分钟前
1分钟前
灵梦柠檬酸完成签到,获得积分10
1分钟前
慕青应助认真的泽洋采纳,获得10
1分钟前
传奇3应助刘浩采纳,获得10
1分钟前
不与仙同完成签到 ,获得积分10
1分钟前
1分钟前
杨杨杨发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Terminologia Embryologica 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5616976
求助须知:如何正确求助?哪些是违规求助? 4701321
关于积分的说明 14913230
捐赠科研通 4747317
什么是DOI,文献DOI怎么找? 2549156
邀请新用户注册赠送积分活动 1512289
关于科研通互助平台的介绍 1474049