Neuromorphic computing with hybrid CNN–Stochastic Reservoir for time series WiFi based human activity recognition

计算机科学 卷积神经网络 特征(语言学) 神经形态工程学 人工智能 模式识别(心理学) 频道(广播) 信号(编程语言) 人工神经网络 实时计算 计算机网络 哲学 语言学 程序设计语言
作者
Chia Yee Saw,Yan Chiew Wong
出处
期刊:Computers & Electrical Engineering [Elsevier BV]
卷期号:111: 108917-108917
标识
DOI:10.1016/j.compeleceng.2023.108917
摘要

Wi-Fi Channel State Information (CSI) based human activity recognition (HAR) which using channel disturbances caused by signal reflection is a novel way of environment sensing and motion recognition. The collected channels characteristics are heavily influenced by the environment, human activity patterns and subject’s weight and height. These signal variations reflected from body components are mainly affected by static multipath effects comprises random noise and behave differently in individuals, and thus an active field of research. To reach further for achieving automated real-time classification, lower computational cost and easy adaptability to hardware are necessary. In this work, a CSI-based HAR with hybrid framework, Convolutional Neural Network (CNN)-Stochastic Reservoir (SR) (CNN-SR) has been proposed, enabling a subject adaptable and more efficient hardware implementation with minimal computational complexity. A subcarrier correlation matrix is first computed and portrayed in image without preprocessing based on the reflection of the raw CSI signal induced by human activities at regular intervals, allowing visual observation of whole pattern changes. The time-based features are subsequently extracted through CNN and these feature arrays are then feed into SR which based on stochastic spiking neural network (SSNN) in simple cycle reservoir architecture for template matching. SR offers attractive power savings over typical von Neumann systems, by doing stochastic computations. The proposed method has also been demonstrated that is capable for HAR based on partially captured signals. The signal pattern of each segment can be observed in a single sight and then employed for person-to-person template recognition. This enables HAR with minimal computational complexity and solving the inter-person variability concerns. The results demonstrate that the proposed CNN-SR achieves impressive performance in recognizing human activities and surpasses existing models with an average accuracy of 93.49%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助寻觅采纳,获得10
刚刚
1秒前
liyi发布了新的文献求助30
2秒前
爱卿5271完成签到,获得积分10
2秒前
MH关注了科研通微信公众号
2秒前
啊印发布了新的文献求助10
2秒前
zzzwwwkkk完成签到,获得积分10
3秒前
kylin发布了新的文献求助10
3秒前
四喜丸子发布了新的文献求助10
3秒前
柒月完成签到,获得积分10
4秒前
4秒前
pangpang完成签到,获得积分10
4秒前
冷水完成签到,获得积分10
5秒前
liu发布了新的文献求助10
5秒前
taco完成签到,获得积分10
5秒前
6秒前
bxb发布了新的文献求助30
6秒前
cd完成签到,获得积分10
7秒前
吱吱发布了新的文献求助10
7秒前
菜鸟勇闯发布了新的文献求助10
8秒前
静水流深完成签到,获得积分10
8秒前
不配.应助univers采纳,获得10
8秒前
8秒前
Lotuslab发布了新的文献求助10
9秒前
11秒前
kylin完成签到,获得积分10
11秒前
木子李发布了新的文献求助10
11秒前
11秒前
糟糕的日记本完成签到,获得积分10
11秒前
桃掉烦恼完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
希希完成签到,获得积分20
13秒前
健忘蓝血完成签到,获得积分10
14秒前
15秒前
15秒前
英姑应助123321采纳,获得10
15秒前
TL完成签到,获得积分10
15秒前
咩咩羊发布了新的文献求助10
15秒前
swj发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4602404
求助须知:如何正确求助?哪些是违规求助? 4011681
关于积分的说明 12419962
捐赠科研通 3691873
什么是DOI,文献DOI怎么找? 2035322
邀请新用户注册赠送积分活动 1068516
科研通“疑难数据库(出版商)”最低求助积分说明 953096