已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Neuromorphic computing with hybrid CNN–Stochastic Reservoir for time series WiFi based human activity recognition

计算机科学 卷积神经网络 特征(语言学) 神经形态工程学 人工智能 模式识别(心理学) 频道(广播) 信号(编程语言) 人工神经网络 实时计算 计算机网络 语言学 哲学 程序设计语言
作者
Chia Yee Saw,Yan Chiew Wong
出处
期刊:Computers & Electrical Engineering [Elsevier BV]
卷期号:111: 108917-108917
标识
DOI:10.1016/j.compeleceng.2023.108917
摘要

Wi-Fi Channel State Information (CSI) based human activity recognition (HAR) which using channel disturbances caused by signal reflection is a novel way of environment sensing and motion recognition. The collected channels characteristics are heavily influenced by the environment, human activity patterns and subject’s weight and height. These signal variations reflected from body components are mainly affected by static multipath effects comprises random noise and behave differently in individuals, and thus an active field of research. To reach further for achieving automated real-time classification, lower computational cost and easy adaptability to hardware are necessary. In this work, a CSI-based HAR with hybrid framework, Convolutional Neural Network (CNN)-Stochastic Reservoir (SR) (CNN-SR) has been proposed, enabling a subject adaptable and more efficient hardware implementation with minimal computational complexity. A subcarrier correlation matrix is first computed and portrayed in image without preprocessing based on the reflection of the raw CSI signal induced by human activities at regular intervals, allowing visual observation of whole pattern changes. The time-based features are subsequently extracted through CNN and these feature arrays are then feed into SR which based on stochastic spiking neural network (SSNN) in simple cycle reservoir architecture for template matching. SR offers attractive power savings over typical von Neumann systems, by doing stochastic computations. The proposed method has also been demonstrated that is capable for HAR based on partially captured signals. The signal pattern of each segment can be observed in a single sight and then employed for person-to-person template recognition. This enables HAR with minimal computational complexity and solving the inter-person variability concerns. The results demonstrate that the proposed CNN-SR achieves impressive performance in recognizing human activities and surpasses existing models with an average accuracy of 93.49%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优雅的觅珍完成签到 ,获得积分10
1秒前
rynchee完成签到 ,获得积分0
3秒前
Papayaaa发布了新的文献求助10
4秒前
5秒前
量子星尘发布了新的文献求助10
8秒前
可爱的函函应助难过千易采纳,获得10
9秒前
9秒前
orixero应助哈哈哈哈采纳,获得10
12秒前
rita4616发布了新的文献求助10
13秒前
小蘑菇应助曦小蕊采纳,获得10
15秒前
18秒前
18秒前
Alex应助芯之痕采纳,获得10
19秒前
科研通AI2S应助Aman采纳,获得10
20秒前
jungle完成签到,获得积分10
20秒前
臻灏完成签到,获得积分10
21秒前
22秒前
jungle发布了新的文献求助10
23秒前
26秒前
充电宝应助Gaara0504采纳,获得10
27秒前
哈哈哈哈发布了新的文献求助10
27秒前
深情安青应助rita4616采纳,获得10
35秒前
aero完成签到 ,获得积分10
39秒前
39秒前
hyr发布了新的文献求助10
39秒前
tingting发布了新的文献求助10
42秒前
稳重的紫易完成签到,获得积分20
42秒前
43秒前
eye发布了新的文献求助10
43秒前
科研通AI2S应助方块块采纳,获得10
45秒前
向日葵完成签到,获得积分10
47秒前
48秒前
十三号失眠完成签到 ,获得积分10
48秒前
林蓥颖完成签到,获得积分10
49秒前
iNk应助科研通管家采纳,获得20
49秒前
斯文败类应助科研通管家采纳,获得10
49秒前
科研通AI5应助科研通管家采纳,获得10
49秒前
情怀应助科研通管家采纳,获得10
50秒前
iNk应助科研通管家采纳,获得20
50秒前
Ava应助科研通管家采纳,获得50
50秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976531
求助须知:如何正确求助?哪些是违规求助? 3520603
关于积分的说明 11204100
捐赠科研通 3257210
什么是DOI,文献DOI怎么找? 1798648
邀请新用户注册赠送积分活动 877835
科研通“疑难数据库(出版商)”最低求助积分说明 806570