已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Neuromorphic computing with hybrid CNN–Stochastic Reservoir for time series WiFi based human activity recognition

计算机科学 卷积神经网络 特征(语言学) 神经形态工程学 人工智能 模式识别(心理学) 频道(广播) 信号(编程语言) 人工神经网络 实时计算 计算机网络 哲学 语言学 程序设计语言
作者
Chia Yee Saw,Yan Chiew Wong
出处
期刊:Computers & Electrical Engineering [Elsevier]
卷期号:111: 108917-108917
标识
DOI:10.1016/j.compeleceng.2023.108917
摘要

Wi-Fi Channel State Information (CSI) based human activity recognition (HAR) which using channel disturbances caused by signal reflection is a novel way of environment sensing and motion recognition. The collected channels characteristics are heavily influenced by the environment, human activity patterns and subject’s weight and height. These signal variations reflected from body components are mainly affected by static multipath effects comprises random noise and behave differently in individuals, and thus an active field of research. To reach further for achieving automated real-time classification, lower computational cost and easy adaptability to hardware are necessary. In this work, a CSI-based HAR with hybrid framework, Convolutional Neural Network (CNN)-Stochastic Reservoir (SR) (CNN-SR) has been proposed, enabling a subject adaptable and more efficient hardware implementation with minimal computational complexity. A subcarrier correlation matrix is first computed and portrayed in image without preprocessing based on the reflection of the raw CSI signal induced by human activities at regular intervals, allowing visual observation of whole pattern changes. The time-based features are subsequently extracted through CNN and these feature arrays are then feed into SR which based on stochastic spiking neural network (SSNN) in simple cycle reservoir architecture for template matching. SR offers attractive power savings over typical von Neumann systems, by doing stochastic computations. The proposed method has also been demonstrated that is capable for HAR based on partially captured signals. The signal pattern of each segment can be observed in a single sight and then employed for person-to-person template recognition. This enables HAR with minimal computational complexity and solving the inter-person variability concerns. The results demonstrate that the proposed CNN-SR achieves impressive performance in recognizing human activities and surpasses existing models with an average accuracy of 93.49%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无感完成签到 ,获得积分10
1秒前
桐桐应助ivy采纳,获得10
3秒前
3秒前
风生完成签到,获得积分10
5秒前
田恬完成签到,获得积分10
5秒前
6秒前
6秒前
8秒前
9秒前
希望天下0贩的0应助康2000采纳,获得10
11秒前
董竹君发布了新的文献求助10
12秒前
kjding发布了新的文献求助10
14秒前
zwww发布了新的文献求助10
14秒前
chen发布了新的文献求助10
16秒前
20秒前
star完成签到 ,获得积分10
20秒前
23秒前
26秒前
jyw发布了新的文献求助10
29秒前
调研昵称发布了新的文献求助10
29秒前
33秒前
WY发布了新的文献求助10
33秒前
34秒前
37秒前
一一应助小陈要发一区采纳,获得10
37秒前
小胖子发布了新的文献求助10
38秒前
饱满的百招完成签到 ,获得积分10
41秒前
追寻半仙完成签到 ,获得积分10
42秒前
gjww应助WY采纳,获得10
45秒前
46秒前
zhukeqinag完成签到,获得积分10
46秒前
ding应助zwww采纳,获得10
50秒前
Coral.完成签到,获得积分10
52秒前
55秒前
Coral.发布了新的文献求助20
55秒前
楚天阔发布了新的文献求助10
56秒前
昂口3完成签到 ,获得积分10
1分钟前
小白又鹏发布了新的文献求助10
1分钟前
1分钟前
潇湘完成签到 ,获得积分10
1分钟前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
《粉体与多孔固体材料的吸附原理、方法及应用》(需要中文翻译版,化学工业出版社,陈建,周力,王奋英等译) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3084988
求助须知:如何正确求助?哪些是违规求助? 2738035
关于积分的说明 7547906
捐赠科研通 2387624
什么是DOI,文献DOI怎么找? 1266055
科研通“疑难数据库(出版商)”最低求助积分说明 613267
版权声明 598450