条状物
旋涡
光学
拓扑(电路)
相(物质)
物理
结构光
几何相位
环面
领域(数学)
光电子学
材料科学
凝聚态物理
数学
量子力学
梁(结构)
等离子体
组合数学
纯数学
复合材料
作者
Jinzhan Zhong,Chenhao Wan,Qiwen Zhan
出处
期刊:ACS Photonics
[American Chemical Society]
日期:2023-09-01
卷期号:10 (9): 3384-3389
标识
DOI:10.1021/acsphotonics.3c00881
摘要
Twisted strips, known for Möbius strips, are three-dimensional (3D) topological structures describing how a surface can be twisted in space. The spatial configuration can be readily demonstrated using a rectangular strip of paper and is well constructed as liquid crystal defect and optical microcavity structures. Here, we use a spatiotemporal light field based on the toroidal vortex to show that the dynamic phase structure can form topological objects with controllable twists number. The structured light field makes full use of the degree of freedom of the high-dimensional parameter space and establishes the connection between optical strips, optical knots, and optical Hopfions. The preparation of such topological structured light may provide new insight for the complex singular optics and find applications in high-dimensional information encoding.
科研通智能强力驱动
Strongly Powered by AbleSci AI