Automatic detection and differential diagnosis of age-related macular degeneration from color fundus photographs using deep learning with hierarchical vision transformer

黄斑变性 人工智能 队列 深度学习 眼底(子宫) 计算机科学 医学 机器学习 眼科 病理
作者
Ke Xu,Shenghai Huang,Zijian Yang,Yibo Zhang,Fang Ye,Gongwei Zheng,Bin Lin,Meng Zhou,Jie Sun
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:167: 107616-107616 被引量:13
标识
DOI:10.1016/j.compbiomed.2023.107616
摘要

Age-related macular degeneration (AMD) is a leading cause of vision loss in the elderly, highlighting the need for early and accurate detection. In this study, we proposed DeepDrAMD, a hierarchical vision transformer-based deep learning model that integrates data augmentation techniques and SwinTransformer, to detect AMD and distinguish between different subtypes using color fundus photographs (CFPs). The DeepDrAMD was trained on the in-house WMUEH training set and achieved high performance in AMD detection with an AUC of 98.76% in the WMUEH testing set and 96.47% in the independent external Ichallenge-AMD cohort. Furthermore, the DeepDrAMD effectively classified dryAMD and wetAMD, achieving AUCs of 93.46% and 91.55%, respectively, in the WMUEH cohort and another independent external ODIR cohort. Notably, DeepDrAMD excelled at distinguishing between wetAMD subtypes, achieving an AUC of 99.36% in the WMUEH cohort. Comparative analysis revealed that the DeepDrAMD outperformed conventional deep-learning models and expert-level diagnosis. The cost-benefit analysis demonstrated that the DeepDrAMD offers substantial cost savings and efficiency improvements compared to manual reading approaches. Overall, the DeepDrAMD represents a significant advancement in AMD detection and differential diagnosis using CFPs, and has the potential to assist healthcare professionals in informed decision-making, early intervention, and treatment optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
破坏王完成签到,获得积分10
4秒前
天选之子发布了新的文献求助10
4秒前
4秒前
Marspe完成签到,获得积分10
6秒前
6秒前
7秒前
小萝卜完成签到,获得积分10
7秒前
7秒前
8秒前
9秒前
Jared应助科研小菜采纳,获得10
9秒前
3719left发布了新的文献求助10
11秒前
sk完成签到,获得积分10
11秒前
12秒前
13秒前
abu发布了新的文献求助10
13秒前
13秒前
zhangwe发布了新的文献求助10
13秒前
NexusExplorer应助秀儿采纳,获得10
13秒前
麻辣烫加麻加辣完成签到 ,获得积分20
14秒前
等待若魔发布了新的文献求助10
14秒前
orixero应助高屋建瓴采纳,获得10
16秒前
cathy完成签到 ,获得积分10
17秒前
tscclm完成签到,获得积分20
17秒前
打打应助壹米采纳,获得10
17秒前
zitong完成签到,获得积分10
17秒前
星沉静默发布了新的文献求助10
18秒前
科研通AI6应助CYPCYP采纳,获得10
18秒前
量子星尘发布了新的文献求助10
19秒前
qlx发布了新的文献求助10
19秒前
惊艳发布了新的文献求助40
20秒前
21秒前
ding应助貔貅采纳,获得10
22秒前
可靠雪雪发布了新的文献求助10
23秒前
丘比特应助abu采纳,获得10
23秒前
24秒前
star应助zhangwe采纳,获得10
24秒前
25秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536588
求助须知:如何正确求助?哪些是违规求助? 4624228
关于积分的说明 14591085
捐赠科研通 4564722
什么是DOI,文献DOI怎么找? 2501884
邀请新用户注册赠送积分活动 1480627
关于科研通互助平台的介绍 1451937