Automatic detection and differential diagnosis of age-related macular degeneration from color fundus photographs using deep learning with hierarchical vision transformer

黄斑变性 人工智能 队列 深度学习 眼底(子宫) 计算机科学 医学 机器学习 眼科 病理
作者
Ke Xu,Shenghai Huang,Zhen Yang,Yibo Zhang,Fang Ye,Gongwei Zheng,Bin Lin,Meng Zhou,Jing Sun
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:167: 107616-107616 被引量:1
标识
DOI:10.1016/j.compbiomed.2023.107616
摘要

Age-related macular degeneration (AMD) is a leading cause of vision loss in the elderly, highlighting the need for early and accurate detection. In this study, we proposed DeepDrAMD, a hierarchical vision transformer-based deep learning model that integrates data augmentation techniques and SwinTransformer, to detect AMD and distinguish between different subtypes using color fundus photographs (CFPs). The DeepDrAMD was trained on the in-house WMUEH training set and achieved high performance in AMD detection with an AUC of 98.76% in the WMUEH testing set and 96.47% in the independent external Ichallenge-AMD cohort. Furthermore, the DeepDrAMD effectively classified dryAMD and wetAMD, achieving AUCs of 93.46% and 91.55%, respectively, in the WMUEH cohort and another independent external ODIR cohort. Notably, DeepDrAMD excelled at distinguishing between wetAMD subtypes, achieving an AUC of 99.36% in the WMUEH cohort. Comparative analysis revealed that the DeepDrAMD outperformed conventional deep-learning models and expert-level diagnosis. The cost-benefit analysis demonstrated that the DeepDrAMD offers substantial cost savings and efficiency improvements compared to manual reading approaches. Overall, the DeepDrAMD represents a significant advancement in AMD detection and differential diagnosis using CFPs, and has the potential to assist healthcare professionals in informed decision-making, early intervention, and treatment optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱吃修勾右完成签到 ,获得积分10
刚刚
ardejiang发布了新的文献求助10
刚刚
whuhustwit发布了新的文献求助10
刚刚
丁静完成签到 ,获得积分10
1秒前
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
哎嘿应助科研通管家采纳,获得10
1秒前
lalala发布了新的文献求助10
2秒前
打打应助科研通管家采纳,获得10
2秒前
科研通AI2S应助123采纳,获得10
2秒前
HEIKU应助科研通管家采纳,获得10
2秒前
HEIKU应助科研通管家采纳,获得10
2秒前
2秒前
哎嘿应助科研通管家采纳,获得10
2秒前
贪玩海之完成签到,获得积分10
2秒前
orixero应助科研通管家采纳,获得10
2秒前
qxy完成签到 ,获得积分10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
哎嘿应助科研通管家采纳,获得10
2秒前
扎心应助科研通管家采纳,获得10
2秒前
HEIKU应助科研通管家采纳,获得10
2秒前
哎嘿应助科研通管家采纳,获得10
2秒前
香蕉觅云应助科研通管家采纳,获得30
2秒前
orixero应助DSUNNY采纳,获得10
2秒前
搜集达人应助科研通管家采纳,获得30
2秒前
哎嘿应助科研通管家采纳,获得10
3秒前
彭于晏应助科研通管家采纳,获得10
3秒前
不安烙发布了新的文献求助50
3秒前
NianAnYu完成签到,获得积分10
3秒前
SaturnY完成签到,获得积分10
4秒前
文静的谷菱完成签到,获得积分10
4秒前
flower完成签到,获得积分10
6秒前
文艺白柏完成签到 ,获得积分10
6秒前
Pengwuguang发布了新的文献求助30
6秒前
李爱国应助开飞机的小羊采纳,获得10
7秒前
7秒前
7秒前
8秒前
司徒向彤完成签到 ,获得积分20
9秒前
9秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158884
求助须知:如何正确求助?哪些是违规求助? 2810072
关于积分的说明 7885775
捐赠科研通 2468916
什么是DOI,文献DOI怎么找? 1314424
科研通“疑难数据库(出版商)”最低求助积分说明 630616
版权声明 602012