Construction active sites in nickel sulfide by dual-doping vanadium/cobalt for highly effective oxygen evolution reaction

过电位 析氧 催化作用 硫化镍 硫化钴 无机化学 材料科学 循环伏安法 分解水 化学工程 电解质 化学 电化学 物理化学 电极 冶金 生物化学 光催化 工程类
作者
Tingyu Zhang,Z. F. Liu,Shiyuan Zhou,Liujun Jin,Qingcheng Zhang,Dajie Lin,Huile Jin,Tiandi Tang,Peiyang Gu,Jingjing Lv
出处
期刊:Journal of Colloid and Interface Science [Elsevier]
卷期号:655: 167-175 被引量:1
标识
DOI:10.1016/j.jcis.2023.10.161
摘要

Rational design and exploration of oxygen evolution reaction (OER) electrocatalysts with exceptional performance are crucial for the advancement of the hydrogen energy economy. In this study, vanadium/cobalt (V/Co) dual-doped nickel sulfide (Ni3S2) nanowires were synthesized on a nickel foam (NF) substrate to overcome the sluggish kinetics typically associated with OER. The resulting catalyst exhibited outstanding electrocatalytic activity towards OER in a 1.0 M KOH electrolyte, with a minimal overpotential of 155 and 263 mV, the current densities of 10 and 100 mA cm−2 can be achieved effortlessly. Importantly, this catalyst demonstrated remarkable stability over extended periods, maintaining its performance for 25 h under constant current density, 55 h under continuously varying current density, and even after undergoing 2000 cycles of cyclic voltammetry (CV), which had surpassed those of most non-noble metal electrocatalysts. The X-ray photoelectron spectroscopy and density functional theory analyses confirmed that the co-doping of Co and V redistributed the electron of Ni, leading to improvements in the d-band center, structural characteristics, and free energy landscapes of adsorbed intermediates. This work presents a novel strategy, based on the connection between electronic structure and catalytic properties, in the design of double-doped catalysts for efficient OER.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
陌上花开完成签到,获得积分0
2秒前
2秒前
嘟嘟发布了新的文献求助10
2秒前
2秒前
3秒前
研一小刘完成签到,获得积分10
3秒前
善良的路灯完成签到,获得积分10
4秒前
uu发布了新的文献求助10
4秒前
5秒前
易烊千玺发布了新的文献求助10
6秒前
请叫我风吹麦浪应助HJJHJH采纳,获得20
6秒前
ZBN发布了新的文献求助10
6秒前
6秒前
善学以致用应助123采纳,获得10
8秒前
8秒前
9秒前
AFEUWOS01发布了新的文献求助30
9秒前
星辰大海应助Left采纳,获得10
9秒前
sansan发布了新的文献求助10
10秒前
哈哈哈完成签到,获得积分10
10秒前
科研通AI5应助DTT采纳,获得10
11秒前
11秒前
12秒前
坚强不言完成签到,获得积分10
12秒前
12秒前
小天应助善良的路灯采纳,获得30
13秒前
13秒前
脑洞疼应助yigu采纳,获得10
14秒前
14秒前
Hu完成签到 ,获得积分10
16秒前
liuyan432完成签到,获得积分10
16秒前
cc完成签到,获得积分10
16秒前
易烊千玺完成签到,获得积分20
16秒前
哒哒哒哒完成签到,获得积分10
16秒前
17秒前
李健应助陶醉觅夏采纳,获得10
18秒前
18秒前
独特凡松完成签到,获得积分10
18秒前
木笔朱瑾完成签到 ,获得积分10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794