过电位
析氧
催化作用
钴
镍
硫化镍
硫化钴
无机化学
材料科学
钒
循环伏安法
分解水
化学工程
电解质
化学
电化学
物理化学
电极
冶金
生物化学
光催化
工程类
作者
Tingyu Zhang,Z. F. Liu,Shiyuan Zhou,Liujun Jin,Qingcheng Zhang,Dajie Lin,Huile Jin,Tiandi Tang,Peiyang Gu,Jingjing Lv
标识
DOI:10.1016/j.jcis.2023.10.161
摘要
Rational design and exploration of oxygen evolution reaction (OER) electrocatalysts with exceptional performance are crucial for the advancement of the hydrogen energy economy. In this study, vanadium/cobalt (V/Co) dual-doped nickel sulfide (Ni3S2) nanowires were synthesized on a nickel foam (NF) substrate to overcome the sluggish kinetics typically associated with OER. The resulting catalyst exhibited outstanding electrocatalytic activity towards OER in a 1.0 M KOH electrolyte, with a minimal overpotential of 155 and 263 mV, the current densities of 10 and 100 mA cm−2 can be achieved effortlessly. Importantly, this catalyst demonstrated remarkable stability over extended periods, maintaining its performance for 25 h under constant current density, 55 h under continuously varying current density, and even after undergoing 2000 cycles of cyclic voltammetry (CV), which had surpassed those of most non-noble metal electrocatalysts. The X-ray photoelectron spectroscopy and density functional theory analyses confirmed that the co-doping of Co and V redistributed the electron of Ni, leading to improvements in the d-band center, structural characteristics, and free energy landscapes of adsorbed intermediates. This work presents a novel strategy, based on the connection between electronic structure and catalytic properties, in the design of double-doped catalysts for efficient OER.
科研通智能强力驱动
Strongly Powered by AbleSci AI