Compositional Semantic Mix for Domain Adaptation in Point Cloud Segmentation

点云 计算机科学 分割 人工智能 杠杆(统计) 域适应 领域(数学分析) 模式识别(心理学) 云计算 机器学习 计算机视觉 数学 分类器(UML) 操作系统 数学分析
作者
Cristiano Saltori,Fabio Galasso,Giuseppe Fiameni,Nicu Sebe,Fabio Poiesi,Elisa Ricci
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:45 (12): 14234-14247 被引量:4
标识
DOI:10.1109/tpami.2023.3310261
摘要

Deep-learning models for 3D point cloud semantic segmentation exhibit limited generalization capabilities when trained and tested on data captured with different sensors or in varying environments due to domain shift. Domain adaptation methods can be employed to mitigate this domain shift, for instance, by simulating sensor noise, developing domain-agnostic generators, or training point cloud completion networks. Often, these methods are tailored for range view maps or necessitate multi-modal input. In contrast, domain adaptation in the image domain can be executed through sample mixing, which emphasizes input data manipulation rather than employing distinct adaptation modules. In this study, we introduce compositional semantic mixing for point cloud domain adaptation, representing the first unsupervised domain adaptation technique for point cloud segmentation based on semantic and geometric sample mixing. We present a two-branch symmetric network architecture capable of concurrently processing point clouds from a source domain (e.g. synthetic) and point clouds from a target domain (e.g. real-world). Each branch operates within one domain by integrating selected data fragments from the other domain and utilizing semantic information derived from source labels and target (pseudo) labels. Additionally, our method can leverage a limited number of human point-level annotations (semi-supervised) to further enhance performance. We assess our approach in both synthetic-to-real and real-to-real scenarios using LiDAR datasets and demonstrate that it significantly outperforms state-of-the-art methods in both unsupervised and semi-supervised settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
贴贴完成签到,获得积分20
刚刚
1秒前
顾矜应助李军采纳,获得30
1秒前
111完成签到,获得积分10
2秒前
来杯冰美式完成签到,获得积分10
2秒前
共享精神应助LU采纳,获得10
3秒前
Orange应助lyh采纳,获得10
3秒前
4秒前
sober完成签到,获得积分10
4秒前
5秒前
完美世界应助格格巫采纳,获得10
6秒前
英俊的小蝴蝶完成签到,获得积分10
7秒前
开朗的慕儿完成签到,获得积分10
7秒前
8秒前
8秒前
yx发布了新的文献求助30
9秒前
10秒前
11秒前
王一豪发布了新的文献求助10
12秒前
12秒前
jason完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
14秒前
科研通AI6应助热情铭采纳,获得30
14秒前
15秒前
16秒前
LU发布了新的文献求助10
16秒前
17秒前
Jason发布了新的文献求助10
18秒前
虚幻道罡发布了新的文献求助10
18秒前
希望天下0贩的0应助喜悦采纳,获得10
18秒前
aslink完成签到,获得积分10
19秒前
lyh发布了新的文献求助10
20秒前
王一豪完成签到 ,获得积分10
20秒前
格格巫发布了新的文献求助10
20秒前
21秒前
希望天下0贩的0应助xyx采纳,获得10
23秒前
阔达鑫发布了新的文献求助10
25秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Learning and Motivation in the Classroom 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5225748
求助须知:如何正确求助?哪些是违规求助? 4397397
关于积分的说明 13686322
捐赠科研通 4261895
什么是DOI,文献DOI怎么找? 2338770
邀请新用户注册赠送积分活动 1336221
关于科研通互助平台的介绍 1292135