Compositional Semantic Mix for Domain Adaptation in Point Cloud Segmentation

点云 计算机科学 分割 人工智能 杠杆(统计) 域适应 领域(数学分析) 模式识别(心理学) 云计算 机器学习 计算机视觉 数学 分类器(UML) 操作系统 数学分析
作者
Cristiano Saltori,Fabio Galasso,Giuseppe Fiameni,Nicu Sebe,Fabio Poiesi,Elisa Ricci
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (12): 14234-14247 被引量:4
标识
DOI:10.1109/tpami.2023.3310261
摘要

Deep-learning models for 3D point cloud semantic segmentation exhibit limited generalization capabilities when trained and tested on data captured with different sensors or in varying environments due to domain shift. Domain adaptation methods can be employed to mitigate this domain shift, for instance, by simulating sensor noise, developing domain-agnostic generators, or training point cloud completion networks. Often, these methods are tailored for range view maps or necessitate multi-modal input. In contrast, domain adaptation in the image domain can be executed through sample mixing, which emphasizes input data manipulation rather than employing distinct adaptation modules. In this study, we introduce compositional semantic mixing for point cloud domain adaptation, representing the first unsupervised domain adaptation technique for point cloud segmentation based on semantic and geometric sample mixing. We present a two-branch symmetric network architecture capable of concurrently processing point clouds from a source domain (e.g. synthetic) and point clouds from a target domain (e.g. real-world). Each branch operates within one domain by integrating selected data fragments from the other domain and utilizing semantic information derived from source labels and target (pseudo) labels. Additionally, our method can leverage a limited number of human point-level annotations (semi-supervised) to further enhance performance. We assess our approach in both synthetic-to-real and real-to-real scenarios using LiDAR datasets and demonstrate that it significantly outperforms state-of-the-art methods in both unsupervised and semi-supervised settings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助tomato采纳,获得10
刚刚
共享精神应助毅1采纳,获得10
1秒前
JamesPei应助11采纳,获得10
1秒前
王宝连发布了新的文献求助10
1秒前
2秒前
徐小赞发布了新的文献求助10
2秒前
2秒前
3秒前
英吉利25发布了新的文献求助30
3秒前
4秒前
Tiger完成签到,获得积分10
4秒前
4秒前
科研通AI6应助滴滴答答采纳,获得10
5秒前
zhonglv7应助优美凡白采纳,获得10
6秒前
fangzhang发布了新的文献求助10
6秒前
shuyingRen发布了新的文献求助10
7秒前
简简单单发布了新的文献求助10
7秒前
JamesPei应助科研通管家采纳,获得30
7秒前
CodeCraft应助科研通管家采纳,获得10
7秒前
Live应助科研通管家采纳,获得10
7秒前
彭于晏应助科研通管家采纳,获得10
8秒前
天天快乐应助科研通管家采纳,获得30
8秒前
上官若男应助科研通管家采纳,获得10
8秒前
SJJ应助科研通管家采纳,获得10
8秒前
无极微光应助科研通管家采纳,获得20
8秒前
瓜皮糖浆完成签到,获得积分10
8秒前
BowieHuang应助科研通管家采纳,获得10
8秒前
我是老大应助科研通管家采纳,获得10
8秒前
Live应助科研通管家采纳,获得10
8秒前
Live应助科研通管家采纳,获得10
8秒前
Live应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
札七完成签到,获得积分10
9秒前
了一李应助轩辕一笑采纳,获得10
9秒前
15169928657完成签到,获得积分10
10秒前
10秒前
10秒前
大蛋完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666454
求助须知:如何正确求助?哪些是违规求助? 4882107
关于积分的说明 15117498
捐赠科研通 4825502
什么是DOI,文献DOI怎么找? 2583441
邀请新用户注册赠送积分活动 1537599
关于科研通互助平台的介绍 1495756