Compositional Semantic Mix for Domain Adaptation in Point Cloud Segmentation

点云 计算机科学 分割 人工智能 杠杆(统计) 域适应 领域(数学分析) 模式识别(心理学) 云计算 机器学习 计算机视觉 数学 数学分析 分类器(UML) 操作系统
作者
Cristiano Saltori,Fabio Galasso,Giuseppe Fiameni,Nicu Sebe,Fabio Poiesi,Elisa Ricci
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:45 (12): 14234-14247 被引量:4
标识
DOI:10.1109/tpami.2023.3310261
摘要

Deep-learning models for 3D point cloud semantic segmentation exhibit limited generalization capabilities when trained and tested on data captured with different sensors or in varying environments due to domain shift. Domain adaptation methods can be employed to mitigate this domain shift, for instance, by simulating sensor noise, developing domain-agnostic generators, or training point cloud completion networks. Often, these methods are tailored for range view maps or necessitate multi-modal input. In contrast, domain adaptation in the image domain can be executed through sample mixing, which emphasizes input data manipulation rather than employing distinct adaptation modules. In this study, we introduce compositional semantic mixing for point cloud domain adaptation, representing the first unsupervised domain adaptation technique for point cloud segmentation based on semantic and geometric sample mixing. We present a two-branch symmetric network architecture capable of concurrently processing point clouds from a source domain (e.g. synthetic) and point clouds from a target domain (e.g. real-world). Each branch operates within one domain by integrating selected data fragments from the other domain and utilizing semantic information derived from source labels and target (pseudo) labels. Additionally, our method can leverage a limited number of human point-level annotations (semi-supervised) to further enhance performance. We assess our approach in both synthetic-to-real and real-to-real scenarios using LiDAR datasets and demonstrate that it significantly outperforms state-of-the-art methods in both unsupervised and semi-supervised settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赵杰发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
热情蜜蜂发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
2秒前
2秒前
3秒前
3秒前
BK_发布了新的文献求助10
4秒前
万能图书馆应助lily采纳,获得10
4秒前
Orange应助JL采纳,获得10
4秒前
waoller1发布了新的文献求助10
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
qiqi发布了新的文献求助10
6秒前
核桃发布了新的文献求助10
7秒前
waoller1发布了新的文献求助10
7秒前
waoller1发布了新的文献求助10
7秒前
waoller1发布了新的文献求助10
7秒前
waoller1发布了新的文献求助10
7秒前
waoller1发布了新的文献求助10
7秒前
waoller1发布了新的文献求助10
7秒前
waoller1发布了新的文献求助10
7秒前
waoller1发布了新的文献求助10
7秒前
TINA发布了新的文献求助10
7秒前
8秒前
8秒前
rong发布了新的文献求助10
9秒前
9秒前
9秒前
11秒前
云轩发布了新的文献求助10
11秒前
慕青应助藿香采纳,获得10
12秒前
13秒前
千千完成签到,获得积分10
14秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979440
求助须知:如何正确求助?哪些是违规求助? 3523402
关于积分的说明 11217322
捐赠科研通 3260886
什么是DOI,文献DOI怎么找? 1800231
邀请新用户注册赠送积分活动 878983
科研通“疑难数据库(出版商)”最低求助积分说明 807126