Compositional Semantic Mix for Domain Adaptation in Point Cloud Segmentation

点云 计算机科学 分割 人工智能 杠杆(统计) 域适应 领域(数学分析) 模式识别(心理学) 云计算 机器学习 计算机视觉 数学 分类器(UML) 操作系统 数学分析
作者
Cristiano Saltori,Fabio Galasso,Giuseppe Fiameni,Nicu Sebe,Fabio Poiesi,Elisa Ricci
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (12): 14234-14247 被引量:4
标识
DOI:10.1109/tpami.2023.3310261
摘要

Deep-learning models for 3D point cloud semantic segmentation exhibit limited generalization capabilities when trained and tested on data captured with different sensors or in varying environments due to domain shift. Domain adaptation methods can be employed to mitigate this domain shift, for instance, by simulating sensor noise, developing domain-agnostic generators, or training point cloud completion networks. Often, these methods are tailored for range view maps or necessitate multi-modal input. In contrast, domain adaptation in the image domain can be executed through sample mixing, which emphasizes input data manipulation rather than employing distinct adaptation modules. In this study, we introduce compositional semantic mixing for point cloud domain adaptation, representing the first unsupervised domain adaptation technique for point cloud segmentation based on semantic and geometric sample mixing. We present a two-branch symmetric network architecture capable of concurrently processing point clouds from a source domain (e.g. synthetic) and point clouds from a target domain (e.g. real-world). Each branch operates within one domain by integrating selected data fragments from the other domain and utilizing semantic information derived from source labels and target (pseudo) labels. Additionally, our method can leverage a limited number of human point-level annotations (semi-supervised) to further enhance performance. We assess our approach in both synthetic-to-real and real-to-real scenarios using LiDAR datasets and demonstrate that it significantly outperforms state-of-the-art methods in both unsupervised and semi-supervised settings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
meng完成签到,获得积分10
1秒前
酷波er应助雪落千寒采纳,获得10
1秒前
1秒前
zhui发布了新的文献求助10
1秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
嘎哈完成签到 ,获得积分10
3秒前
3秒前
欣喜代秋发布了新的文献求助10
4秒前
4秒前
李健的小迷弟应助zzz采纳,获得10
5秒前
5秒前
黄奥龙完成签到,获得积分10
5秒前
单于思雁完成签到,获得积分10
6秒前
星辰大海应助虚幻导师采纳,获得10
6秒前
rabwang发布了新的文献求助30
6秒前
mu发布了新的文献求助10
6秒前
7秒前
A健发布了新的文献求助10
7秒前
KIMI发布了新的文献求助10
8秒前
8秒前
单于思雁发布了新的文献求助10
9秒前
nigexiaohua完成签到,获得积分10
9秒前
慈祥的芷云完成签到 ,获得积分10
9秒前
阿辉发布了新的文献求助30
9秒前
10秒前
鲍binyu完成签到,获得积分10
10秒前
Li发布了新的文献求助10
10秒前
Owen应助M.采纳,获得10
10秒前
核桃应助无奈的靖仇采纳,获得30
11秒前
zqk02发布了新的文献求助10
12秒前
ny完成签到,获得积分10
12秒前
古娜拉黑暗之神完成签到,获得积分10
12秒前
ding应助二马三乡采纳,获得10
12秒前
13秒前
A健完成签到,获得积分10
13秒前
lzh发布了新的文献求助30
13秒前
务实的夏菡完成签到,获得积分10
13秒前
求助人员发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718168
求助须知:如何正确求助?哪些是违规求助? 5250844
关于积分的说明 15284812
捐赠科研通 4868418
什么是DOI,文献DOI怎么找? 2614132
邀请新用户注册赠送积分活动 1564020
关于科研通互助平台的介绍 1521476