亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Compositional Semantic Mix for Domain Adaptation in Point Cloud Segmentation

点云 计算机科学 分割 人工智能 杠杆(统计) 域适应 领域(数学分析) 模式识别(心理学) 云计算 机器学习 计算机视觉 数学 分类器(UML) 操作系统 数学分析
作者
Cristiano Saltori,Fabio Galasso,Giuseppe Fiameni,Nicu Sebe,Fabio Poiesi,Elisa Ricci
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (12): 14234-14247 被引量:4
标识
DOI:10.1109/tpami.2023.3310261
摘要

Deep-learning models for 3D point cloud semantic segmentation exhibit limited generalization capabilities when trained and tested on data captured with different sensors or in varying environments due to domain shift. Domain adaptation methods can be employed to mitigate this domain shift, for instance, by simulating sensor noise, developing domain-agnostic generators, or training point cloud completion networks. Often, these methods are tailored for range view maps or necessitate multi-modal input. In contrast, domain adaptation in the image domain can be executed through sample mixing, which emphasizes input data manipulation rather than employing distinct adaptation modules. In this study, we introduce compositional semantic mixing for point cloud domain adaptation, representing the first unsupervised domain adaptation technique for point cloud segmentation based on semantic and geometric sample mixing. We present a two-branch symmetric network architecture capable of concurrently processing point clouds from a source domain (e.g. synthetic) and point clouds from a target domain (e.g. real-world). Each branch operates within one domain by integrating selected data fragments from the other domain and utilizing semantic information derived from source labels and target (pseudo) labels. Additionally, our method can leverage a limited number of human point-level annotations (semi-supervised) to further enhance performance. We assess our approach in both synthetic-to-real and real-to-real scenarios using LiDAR datasets and demonstrate that it significantly outperforms state-of-the-art methods in both unsupervised and semi-supervised settings.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无情的鹭洋完成签到,获得积分10
10秒前
yuanling完成签到 ,获得积分10
19秒前
22秒前
吴迪发布了新的文献求助10
27秒前
田様应助苏亚婷采纳,获得10
39秒前
闫闫完成签到 ,获得积分10
1分钟前
Nancy0818完成签到 ,获得积分10
1分钟前
乐乐应助lalkiii采纳,获得10
1分钟前
852应助科研通管家采纳,获得10
1分钟前
Ava应助科研通管家采纳,获得10
1分钟前
852应助科研通管家采纳,获得10
1分钟前
Ava应助科研通管家采纳,获得10
1分钟前
1分钟前
lalkiii发布了新的文献求助10
1分钟前
2分钟前
2分钟前
大模型应助杨惠子采纳,获得10
2分钟前
2分钟前
杨惠子发布了新的文献求助10
2分钟前
杨惠子完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
Hello应助科研通管家采纳,获得10
3分钟前
菜菜完成签到 ,获得积分10
4分钟前
4分钟前
苏亚婷发布了新的文献求助10
4分钟前
点点点完成签到 ,获得积分10
5分钟前
hahasun发布了新的文献求助10
5分钟前
6分钟前
斯文败类应助苏亚婷采纳,获得10
6分钟前
6分钟前
怕孤独的海秋完成签到,获得积分10
6分钟前
6分钟前
6分钟前
科研通AI2S应助吴迪采纳,获得10
6分钟前
小蘑菇应助怕孤独的海秋采纳,获得10
7分钟前
7分钟前
7分钟前
高分求助中
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Signals, Systems, and Signal Processing 880
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Discrete-Time Signals and Systems 510
Industrial Organic Chemistry, 5th Edition 400
Multiple Regression and Beyond An Introduction to Multiple Regression and Structural Equation Modeling 4th Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5845406
求助须知:如何正确求助?哪些是违规求助? 6202404
关于积分的说明 15616421
捐赠科研通 4962230
什么是DOI,文献DOI怎么找? 2675328
邀请新用户注册赠送积分活动 1620094
关于科研通互助平台的介绍 1575413