Compositional Semantic Mix for Domain Adaptation in Point Cloud Segmentation

点云 计算机科学 分割 人工智能 杠杆(统计) 域适应 领域(数学分析) 模式识别(心理学) 云计算 机器学习 计算机视觉 数学 分类器(UML) 操作系统 数学分析
作者
Cristiano Saltori,Fabio Galasso,Giuseppe Fiameni,Nicu Sebe,Fabio Poiesi,Elisa Ricci
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (12): 14234-14247 被引量:4
标识
DOI:10.1109/tpami.2023.3310261
摘要

Deep-learning models for 3D point cloud semantic segmentation exhibit limited generalization capabilities when trained and tested on data captured with different sensors or in varying environments due to domain shift. Domain adaptation methods can be employed to mitigate this domain shift, for instance, by simulating sensor noise, developing domain-agnostic generators, or training point cloud completion networks. Often, these methods are tailored for range view maps or necessitate multi-modal input. In contrast, domain adaptation in the image domain can be executed through sample mixing, which emphasizes input data manipulation rather than employing distinct adaptation modules. In this study, we introduce compositional semantic mixing for point cloud domain adaptation, representing the first unsupervised domain adaptation technique for point cloud segmentation based on semantic and geometric sample mixing. We present a two-branch symmetric network architecture capable of concurrently processing point clouds from a source domain (e.g. synthetic) and point clouds from a target domain (e.g. real-world). Each branch operates within one domain by integrating selected data fragments from the other domain and utilizing semantic information derived from source labels and target (pseudo) labels. Additionally, our method can leverage a limited number of human point-level annotations (semi-supervised) to further enhance performance. We assess our approach in both synthetic-to-real and real-to-real scenarios using LiDAR datasets and demonstrate that it significantly outperforms state-of-the-art methods in both unsupervised and semi-supervised settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jianxi完成签到,获得积分10
刚刚
刚刚
欣喜季节完成签到,获得积分10
1秒前
Mace完成签到,获得积分20
1秒前
科目三应助胡梅13采纳,获得10
1秒前
梦里繁花完成签到,获得积分10
1秒前
2秒前
李健的粉丝团团长应助calm采纳,获得10
2秒前
nieyaochi发布了新的文献求助10
3秒前
3秒前
又又发布了新的文献求助20
5秒前
李健应助张启娜采纳,获得10
5秒前
5秒前
5秒前
於访琴发布了新的文献求助30
6秒前
科研通AI6应助加油小白菜采纳,获得10
6秒前
呆呆鱼完成签到 ,获得积分10
7秒前
白夜完成签到,获得积分20
7秒前
Zx_1993应助xunxun采纳,获得20
7秒前
背后妙旋发布了新的文献求助10
8秒前
Zx_1993应助xunxun采纳,获得20
8秒前
晓静完成签到 ,获得积分10
8秒前
8秒前
ccm应助杨咩咩采纳,获得10
8秒前
8秒前
派大星发布了新的文献求助10
8秒前
胡天硕完成签到,获得积分10
9秒前
9秒前
9秒前
彭于晏应助爱笑擎苍采纳,获得10
9秒前
胡梅13完成签到,获得积分10
10秒前
10秒前
小马甲应助猫猫虫采纳,获得10
11秒前
泡泡奶熙发布了新的文献求助10
11秒前
在水一方应助Inter09采纳,获得10
11秒前
科研通AI6应助lilei采纳,获得10
11秒前
王一鸣完成签到 ,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
calm发布了新的文献求助10
12秒前
无敌科研大王完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5480202
求助须知:如何正确求助?哪些是违规求助? 4581401
关于积分的说明 14380418
捐赠科研通 4509946
什么是DOI,文献DOI怎么找? 2471633
邀请新用户注册赠送积分活动 1458035
关于科研通互助平台的介绍 1431786