Compositional Semantic Mix for Domain Adaptation in Point Cloud Segmentation

点云 计算机科学 分割 人工智能 杠杆(统计) 域适应 领域(数学分析) 模式识别(心理学) 云计算 机器学习 计算机视觉 数学 数学分析 分类器(UML) 操作系统
作者
Cristiano Saltori,Fabio Galasso,Giuseppe Fiameni,Nicu Sebe,Fabio Poiesi,Elisa Ricci
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (12): 14234-14247 被引量:4
标识
DOI:10.1109/tpami.2023.3310261
摘要

Deep-learning models for 3D point cloud semantic segmentation exhibit limited generalization capabilities when trained and tested on data captured with different sensors or in varying environments due to domain shift. Domain adaptation methods can be employed to mitigate this domain shift, for instance, by simulating sensor noise, developing domain-agnostic generators, or training point cloud completion networks. Often, these methods are tailored for range view maps or necessitate multi-modal input. In contrast, domain adaptation in the image domain can be executed through sample mixing, which emphasizes input data manipulation rather than employing distinct adaptation modules. In this study, we introduce compositional semantic mixing for point cloud domain adaptation, representing the first unsupervised domain adaptation technique for point cloud segmentation based on semantic and geometric sample mixing. We present a two-branch symmetric network architecture capable of concurrently processing point clouds from a source domain (e.g. synthetic) and point clouds from a target domain (e.g. real-world). Each branch operates within one domain by integrating selected data fragments from the other domain and utilizing semantic information derived from source labels and target (pseudo) labels. Additionally, our method can leverage a limited number of human point-level annotations (semi-supervised) to further enhance performance. We assess our approach in both synthetic-to-real and real-to-real scenarios using LiDAR datasets and demonstrate that it significantly outperforms state-of-the-art methods in both unsupervised and semi-supervised settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
姜姜发布了新的文献求助10
刚刚
李灿完成签到,获得积分20
1秒前
iNk应助Liuyicong采纳,获得20
1秒前
1秒前
醉熏的迎天完成签到 ,获得积分10
2秒前
2秒前
3秒前
二零三完成签到,获得积分10
3秒前
3秒前
柠檬牙发布了新的文献求助10
3秒前
SEVEN发布了新的文献求助10
3秒前
WT完成签到,获得积分10
3秒前
5秒前
二零三发布了新的文献求助10
6秒前
6秒前
orixero应助l凉夏采纳,获得20
6秒前
andrele发布了新的文献求助10
7秒前
劉劉完成签到 ,获得积分10
8秒前
张三发布了新的文献求助10
8秒前
8秒前
9秒前
探探发布了新的文献求助30
10秒前
柠檬牙完成签到,获得积分10
10秒前
123zyx发布了新的文献求助10
11秒前
匡佐英发布了新的文献求助10
11秒前
英俊的铭应助倩倩采纳,获得10
12秒前
12秒前
打打应助小红采纳,获得10
12秒前
勤恳斑马发布了新的文献求助10
13秒前
13秒前
夕瑶摇啊发布了新的文献求助10
14秒前
可靠从云完成签到 ,获得积分10
15秒前
syk应助小枣采纳,获得10
16秒前
16秒前
19秒前
无花果应助包宇采纳,获得10
19秒前
20秒前
WT发布了新的文献求助10
20秒前
20秒前
20秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310539
求助须知:如何正确求助?哪些是违规求助? 2943392
关于积分的说明 8514589
捐赠科研通 2618688
什么是DOI,文献DOI怎么找? 1431326
科研通“疑难数据库(出版商)”最低求助积分说明 664442
邀请新用户注册赠送积分活动 649626