A Shortcut Enhanced LSTM-GCN Network for Multi-Sensor Based Human Motion Tracking

计算机科学 跟踪(教育) 人工智能 计算机视觉 运动(物理) 无线传感器网络 匹配移动 实时计算 计算机网络 心理学 教育学
作者
Xiaoyu Li,Chaoxiang Ye,Binhua Huang,Zhenning Zhou,Yuanzhe Su,Yue Ma,Zhengkun Yi,Xinyu Wu
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:21 (4): 5078-5087 被引量:5
标识
DOI:10.1109/tase.2023.3307890
摘要

Multi-sensor based motion tracking is of great interest to the robotics community as it may lessen the need for expensive optical motion capture equipment. However, the traditional convolution algorithms have difficulty adapting to the data due to the changes of joints' relative position during motion. The time-series networks often used in the past ignore the spatial characteristics of sensors. We tackle this challenge by combining long short-term memory (LSTM) with graph convolution network (GCN), adding the prior knowledge of sensor distribution, and integrating it into the motion law through the adjacency matrix. This article proposes a novel shortcut enhanced LSTM-GCN network (SE-LSTM-GCN). It connects LSTM and GCN in sequence and extracts temporal and spatial features of data. At the same time, the shortcut is used in the network to enhance the output of two middle layers and to restore the filtered information. Our experimental results on two different motion tracking datasets show that the proposed network is able to learn the mapping relationship with better universality, less tracking error, and without increasing much training time, and can better perform human motion tracking tasks. Note to Practitioners —Accurate and real-time multiple soft sensors motion tracking suits are more accepted for their low cost. However, the soft-sensor based motion tracking is not comparable to the traditional optical equipment in prediction error. To this end, we present a novel network shortcut enhanced LSTM-GCN (SE-LSTM-GCN), consisting of shortcuts, long short-term memory (LSTM), and graph convolution network (GCN). The LSTM solves the non-linear and hysteresis of soft strain sensors, and GCN is integrated into the network since the knowledge of sensor location can be put into the adjacency matrix generated by the k-nearest neighbor (KNN). While shortcuts are used to enhance the output of middle layers to form combined features. Experimental results on two public datasets show that the proposed network is superior to competing algorithms in terms of prediction error. The network can be deployed in embedded devices, such as VR gloves to provide a better gaming experience. The current algorithm is based on the relationship between sensor data and distance. In future research, we will focus on adding other human kinematics laws to the network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
an发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
xuan完成签到,获得积分10
2秒前
2秒前
1111chen发布了新的文献求助10
2秒前
3秒前
ssshuang完成签到,获得积分10
3秒前
3秒前
4秒前
情怀应助心灵美白玉采纳,获得10
5秒前
柏白凝发布了新的文献求助10
5秒前
氼乚发布了新的文献求助10
7秒前
Wanfeng完成签到,获得积分10
7秒前
小白发布了新的文献求助10
7秒前
7秒前
8秒前
华仔应助容我想想采纳,获得10
8秒前
小玲仔发布了新的文献求助10
8秒前
zdesfsfa发布了新的文献求助10
10秒前
gds2021发布了新的文献求助10
10秒前
薄荷糖发布了新的文献求助10
10秒前
彭于晏应助lx采纳,获得10
11秒前
11秒前
12秒前
13秒前
tu123发布了新的文献求助10
14秒前
严惜完成签到,获得积分10
14秒前
FashionBoy应助小周碎碎念采纳,获得10
15秒前
勤奋西牛发布了新的文献求助10
17秒前
ding应助活力盼晴采纳,获得10
18秒前
sunsunsun完成签到,获得积分10
18秒前
ChenkLuo发布了新的文献求助10
18秒前
陳钧浩完成签到,获得积分10
19秒前
温言叮叮铛完成签到,获得积分10
19秒前
SciGPT应助卜卜大王采纳,获得10
19秒前
薄荷糖完成签到,获得积分10
19秒前
sdh完成签到,获得积分10
20秒前
Irving完成签到,获得积分10
20秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305612
求助须知:如何正确求助?哪些是违规求助? 2939343
关于积分的说明 8493224
捐赠科研通 2613787
什么是DOI,文献DOI怎么找? 1427585
科研通“疑难数据库(出版商)”最低求助积分说明 663156
邀请新用户注册赠送积分活动 647916