A design of ultra-short-term power prediction algorithm driven by wind turbine operation and maintenance data for LSTM-SA neural network

风力发电 风速 人工神经网络 涡轮机 偏转(物理) 控制理论(社会学) 算法 计算机科学 功率优化器 功率(物理) 风电预测 循环神经网络 电力系统 工程类 人工智能 最大功率点跟踪 气象学 电气工程 机械工程 物理 控制(管理) 光学 逆变器 电压 量子力学
作者
Hong Wu You,Rui Jia,Xiaolei Chen,Linyan Huang
出处
期刊:Journal of Renewable and Sustainable Energy [American Institute of Physics]
卷期号:15 (4) 被引量:1
标识
DOI:10.1063/5.0159574
摘要

Due to factors such as meteorology and geography, the generated power of wind turbines fluctuates frequently. In this way, power changes should be predicted in grid connection to take control measures in time. In this paper, an operation and maintenance data-driven LSTM-SA (long short-term memory with self-attention) prediction algorithm is designed to predict the ultra-short-term power of wind turbines. First, the wind turbine operation and maintenance data, including wind speed, blade deflection angle, yaw angle, humidity, and temperature, are subjected to feature selection by using the Pearson correlation coefficient method and the Lasso algorithm, thereby establishing the correlation between wind speed, blade deflection angle, and out power. Then, full-connect neural network is trained to establish a mapping model of wind speed, blade deflection angle, and out power. The power change rate k is calculated by the derivative of output power to wind speed. Finally, based on the historical power data and the power change rate k, the LSTM neural network power prediction model is trained to calculate the output power prediction value. In order to increase the training efficiency and reduce the delay, the self-attention mechanism is used to optimize the hidden layer of the LSTM model. The test results show that, compared with similar prediction algorithms, this algorithm has higher prediction accuracy, faster convergence speed, and better stability, which can solve the problem of accurately predicting ultra-short-term power when wind power training data is inadequate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
七七发布了新的文献求助10
1秒前
风中虔纹完成签到,获得积分10
2秒前
luoluo发布了新的文献求助30
2秒前
老迟到的元霜完成签到,获得积分10
4秒前
4秒前
4秒前
搜集达人应助jk258采纳,获得10
6秒前
pluto应助cz采纳,获得10
6秒前
清梦完成签到,获得积分10
7秒前
彭于彦祖应助ly采纳,获得30
8秒前
甜蜜的蘑菇完成签到,获得积分20
8秒前
8秒前
huangsi完成签到,获得积分10
8秒前
感觉他香香的完成签到 ,获得积分20
8秒前
9秒前
qq完成签到,获得积分10
10秒前
别潜然发布了新的文献求助10
10秒前
11秒前
Jerome完成签到,获得积分10
11秒前
11秒前
luoluo完成签到,获得积分20
12秒前
Ao应助我是张铁柱·采纳,获得20
13秒前
madison发布了新的文献求助10
14秒前
lmf完成签到 ,获得积分10
14秒前
秦傲晴完成签到,获得积分10
14秒前
大卡司完成签到,获得积分10
15秒前
55555发布了新的文献求助10
16秒前
Hello应助萧一江采纳,获得10
16秒前
克姑美完成签到 ,获得积分10
17秒前
青城昊发布了新的文献求助10
18秒前
Huanghong完成签到,获得积分10
18秒前
一条小鱼完成签到,获得积分10
18秒前
赫连山菡完成签到,获得积分10
19秒前
yar举报培根不是吃的肉求助涉嫌违规
21秒前
SciGPT应助无限山晴采纳,获得10
21秒前
吃算不算超能力完成签到,获得积分20
22秒前
Yvette完成签到,获得积分10
23秒前
23秒前
24秒前
orixero应助游泳的烤鸭采纳,获得10
24秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304828
求助须知:如何正确求助?哪些是违规求助? 2938788
关于积分的说明 8489918
捐赠科研通 2613267
什么是DOI,文献DOI怎么找? 1427258
科研通“疑难数据库(出版商)”最低求助积分说明 662907
邀请新用户注册赠送积分活动 647557