A design of ultra-short-term power prediction algorithm driven by wind turbine operation and maintenance data for LSTM-SA neural network

风力发电 风速 人工神经网络 涡轮机 偏转(物理) 控制理论(社会学) 算法 计算机科学 功率优化器 功率(物理) 风电预测 循环神经网络 电力系统 工程类 人工智能 最大功率点跟踪 气象学 电气工程 逆变器 机械工程 控制(管理) 电压 物理 光学 量子力学
作者
Hong Wu You,Rui Jia,Xiaolei Chen,Linyan Huang
出处
期刊:Journal of Renewable and Sustainable Energy [American Institute of Physics]
卷期号:15 (4) 被引量:1
标识
DOI:10.1063/5.0159574
摘要

Due to factors such as meteorology and geography, the generated power of wind turbines fluctuates frequently. In this way, power changes should be predicted in grid connection to take control measures in time. In this paper, an operation and maintenance data-driven LSTM-SA (long short-term memory with self-attention) prediction algorithm is designed to predict the ultra-short-term power of wind turbines. First, the wind turbine operation and maintenance data, including wind speed, blade deflection angle, yaw angle, humidity, and temperature, are subjected to feature selection by using the Pearson correlation coefficient method and the Lasso algorithm, thereby establishing the correlation between wind speed, blade deflection angle, and out power. Then, full-connect neural network is trained to establish a mapping model of wind speed, blade deflection angle, and out power. The power change rate k is calculated by the derivative of output power to wind speed. Finally, based on the historical power data and the power change rate k, the LSTM neural network power prediction model is trained to calculate the output power prediction value. In order to increase the training efficiency and reduce the delay, the self-attention mechanism is used to optimize the hidden layer of the LSTM model. The test results show that, compared with similar prediction algorithms, this algorithm has higher prediction accuracy, faster convergence speed, and better stability, which can solve the problem of accurately predicting ultra-short-term power when wind power training data is inadequate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助朱宏采纳,获得10
1秒前
小张的小喵完成签到,获得积分10
3秒前
3秒前
3秒前
5秒前
6秒前
经年发布了新的文献求助10
7秒前
7秒前
好运莲莲发布了新的文献求助10
7秒前
李爱国应助Okayoooooo采纳,获得30
7秒前
hying发布了新的文献求助10
8秒前
慕青应助Mr采纳,获得10
9秒前
9秒前
Hh发布了新的文献求助10
11秒前
11秒前
12秒前
Jasper应助lcls采纳,获得10
12秒前
ylf发布了新的文献求助10
13秒前
14秒前
可靠的冰巧关注了科研通微信公众号
15秒前
15秒前
阳光血茗完成签到,获得积分10
15秒前
所所应助平淡惜灵采纳,获得10
18秒前
CodeCraft应助开朗的柜子采纳,获得10
19秒前
princeyxx完成签到,获得积分10
19秒前
田様应助ll采纳,获得30
19秒前
尔沁完成签到,获得积分20
19秒前
20秒前
刘丹丹发布了新的文献求助10
21秒前
量子星尘发布了新的文献求助10
21秒前
22秒前
Lan完成签到,获得积分10
22秒前
22秒前
wwj1009发布了新的文献求助10
23秒前
机灵的雁蓉完成签到,获得积分10
23秒前
斯文败类应助大方的书雁采纳,获得10
23秒前
25秒前
z11发布了新的文献求助10
25秒前
完美世界应助wzz采纳,获得10
27秒前
27秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952902
求助须知:如何正确求助?哪些是违规求助? 3498332
关于积分的说明 11091532
捐赠科研通 3228969
什么是DOI,文献DOI怎么找? 1785163
邀请新用户注册赠送积分活动 869202
科研通“疑难数据库(出版商)”最低求助积分说明 801377