计算机科学
可扩展性
人工智能
降噪
图像(数学)
任务(项目管理)
图像增强
深度学习
图像去噪
扩散
即插即用
分辨率(逻辑)
计算机视觉
模式识别(心理学)
数据库
物理
热力学
操作系统
管理
经济
作者
Jun Ma,Youwen Zhu,Chenyu You,Bo Wang
标识
DOI:10.1007/978-3-031-43898-1_1
摘要
Deep learning-based medical image enhancement methods (e.g., denoising and super-resolution) mainly rely on paired data and correspondingly the well-trained models can only handle one type of task. In this paper, we address the limitation with a diffusion model-based framework that mitigates the requirement of paired data and can simultaneously handle multiple enhancement tasks by one pre-trained diffusion model without fine-tuning. Experiments on low-dose CT and heart MR datasets demonstrate that the proposed method is versatile and robust for image denoising and super-resolution. We believe our work constitutes a practical and versatile solution to scalable and generalizable image enhancement.
科研通智能强力驱动
Strongly Powered by AbleSci AI