Caught-in-Translation (CiT): Detecting Cross-Level Inconsistency Attacks in Network Functions Virtualization (NFV)

计算机科学 事件(粒子物理) 人工智能 抽象 杠杆(统计) 相似性(几何) 图像(数学) 哲学 物理 认识论 量子力学
作者
Sudershan Lakshmanan,Mengyuan Zhang,Suryadipta Majumdar,Yosr Jarraya,Makan Pourzandi,Lingyu Wang
出处
期刊:IEEE Transactions on Dependable and Secure Computing [Institute of Electrical and Electronics Engineers]
卷期号:21 (4): 2964-2981
标识
DOI:10.1109/tdsc.2023.3320811
摘要

As one of the main technology pillars of 5G networks, Network Functions Virtualization (NFV) enables agile and cost-effective deployment of network services. However, the multi-level, multi-actor design of NFV may also allow for inconsistency between the different abstraction levels to be mistakenly or intentionally introduced, as shown in recent studies. Serious security issues, such as man-in-the-middle, network sniffing, and DoS, may arise at one abstraction level without being noticed by the victims at another level. Most existing solutions are either limited to one abstraction level of NFV or reliant on direct access to lower-level data which could become inaccessible when managed by different providers. In this paper, by drawing an analogy between cross-level NFV event sequences and natural languages, we propose a Neural Machine Translation-based approach, namely, Caught-in-Translation (CiT) , to detect cross-level inconsistency attacks in NFV at runtime. Specifically, we first extract event sequences from different abstraction levels of an NFV stack. We then leverage Long Short-Term Memory (LSTM) to translate the event sequences from one level to another. Finally, we apply both a similarity metric and a Siamese neural network to compare the translated event sequences with the original ones to detect attacks. We integrate CiT into OpenStack/Tacker, a popular open-source NFV implementation, and evaluate its performance using both real and synthetic data. Experimental results show the benefit of leveraging NMT as CiT achieves AUC≥96.03%, which significantly outperforms traditional SVM-based anomaly detection. We also evaluate CiT in terms of its efficiency, scalability, and robustness for detecting inconsistency attacks in NFV platforms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨震发布了新的文献求助10
1秒前
小吴同学完成签到,获得积分10
2秒前
Lucky完成签到 ,获得积分10
2秒前
Polymer72应助阿邪采纳,获得10
3秒前
4秒前
le完成签到,获得积分20
4秒前
小吴同学发布了新的文献求助10
5秒前
7秒前
圆圆发布了新的文献求助10
8秒前
共享精神应助lx采纳,获得10
8秒前
华仔应助LK采纳,获得10
10秒前
11秒前
11秒前
11秒前
12秒前
彭于晏应助OncE采纳,获得10
12秒前
13秒前
学术野猪发布了新的文献求助10
14秒前
shepherd完成签到,获得积分10
15秒前
宇文青寒完成签到,获得积分10
15秒前
阿邪完成签到,获得积分10
15秒前
hh发布了新的文献求助10
16秒前
17秒前
shepherd发布了新的文献求助10
19秒前
清风完成签到 ,获得积分10
20秒前
forest发布了新的文献求助10
20秒前
所所应助元元采纳,获得10
20秒前
科研小张张完成签到,获得积分10
20秒前
21秒前
寒风完成签到,获得积分10
21秒前
22秒前
小马甲应助圆圆采纳,获得10
23秒前
端庄的火龙果完成签到,获得积分10
24秒前
25秒前
cwy发布了新的文献求助10
26秒前
hope应助asdfgh采纳,获得10
27秒前
27秒前
激动的小之完成签到,获得积分10
28秒前
28秒前
28秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3343244
求助须知:如何正确求助?哪些是违规求助? 2970337
关于积分的说明 8643416
捐赠科研通 2650267
什么是DOI,文献DOI怎么找? 1451220
科研通“疑难数据库(出版商)”最低求助积分说明 672116
邀请新用户注册赠送积分活动 661447