Caught-in-Translation (CiT): Detecting Cross-Level Inconsistency Attacks in Network Functions Virtualization (NFV)

计算机科学 事件(粒子物理) 人工智能 抽象 杠杆(统计) 相似性(几何) 量子力学 认识论 图像(数学) 物理 哲学
作者
Sudershan Lakshmanan,Mengyuan Zhang,Suryadipta Majumdar,Yosr Jarraya,Makan Pourzandi,Lingyu Wang
出处
期刊:IEEE Transactions on Dependable and Secure Computing [IEEE Computer Society]
卷期号:21 (4): 2964-2981
标识
DOI:10.1109/tdsc.2023.3320811
摘要

As one of the main technology pillars of 5G networks, Network Functions Virtualization (NFV) enables agile and cost-effective deployment of network services. However, the multi-level, multi-actor design of NFV may also allow for inconsistency between the different abstraction levels to be mistakenly or intentionally introduced, as shown in recent studies. Serious security issues, such as man-in-the-middle, network sniffing, and DoS, may arise at one abstraction level without being noticed by the victims at another level. Most existing solutions are either limited to one abstraction level of NFV or reliant on direct access to lower-level data which could become inaccessible when managed by different providers. In this paper, by drawing an analogy between cross-level NFV event sequences and natural languages, we propose a Neural Machine Translation-based approach, namely, Caught-in-Translation (CiT) , to detect cross-level inconsistency attacks in NFV at runtime. Specifically, we first extract event sequences from different abstraction levels of an NFV stack. We then leverage Long Short-Term Memory (LSTM) to translate the event sequences from one level to another. Finally, we apply both a similarity metric and a Siamese neural network to compare the translated event sequences with the original ones to detect attacks. We integrate CiT into OpenStack/Tacker, a popular open-source NFV implementation, and evaluate its performance using both real and synthetic data. Experimental results show the benefit of leveraging NMT as CiT achieves AUC≥96.03%, which significantly outperforms traditional SVM-based anomaly detection. We also evaluate CiT in terms of its efficiency, scalability, and robustness for detecting inconsistency attacks in NFV platforms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
耍酷诗槐应助duoduo采纳,获得10
2秒前
2秒前
所所应助Logan采纳,获得10
3秒前
万能图书馆应助啊哭采纳,获得10
3秒前
充电宝应助shadow采纳,获得10
3秒前
4秒前
Liufgui应助AM采纳,获得10
4秒前
4秒前
了了发布了新的文献求助30
5秒前
可爱的函函应助北陆小猫采纳,获得10
5秒前
Drogoo发布了新的文献求助10
5秒前
yangli发布了新的文献求助10
6秒前
慕青应助刻苦的晓槐采纳,获得10
7秒前
善学以致用应助欧阳铭采纳,获得10
8秒前
甜酱完成签到,获得积分10
8秒前
10秒前
乐观若烟完成签到 ,获得积分10
10秒前
CC完成签到,获得积分10
11秒前
11秒前
Owen应助七七采纳,获得10
12秒前
12秒前
14秒前
14秒前
16秒前
Atlantic发布了新的文献求助10
17秒前
17秒前
睡醒了完成签到,获得积分10
18秒前
你就别吃了关注了科研通微信公众号
18秒前
shadow发布了新的文献求助10
19秒前
小马甲应助难过千易采纳,获得10
19秒前
领导范儿应助ddyrh采纳,获得10
19秒前
北陆小猫发布了新的文献求助10
20秒前
Te_quiero关注了科研通微信公众号
22秒前
61发布了新的文献求助10
22秒前
所所应助傲娇的曼香采纳,获得10
23秒前
CC发布了新的文献求助20
24秒前
木木发布了新的文献求助10
25秒前
Greetdawn完成签到,获得积分10
26秒前
27秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998784
求助须知:如何正确求助?哪些是违规求助? 3538262
关于积分的说明 11273791
捐赠科研通 3277260
什么是DOI,文献DOI怎么找? 1807481
邀请新用户注册赠送积分活动 883893
科研通“疑难数据库(出版商)”最低求助积分说明 810075