Early-Season forecasting of citrus block-yield using time series remote sensing and machine learning: A case study in Australian orchards

归一化差异植被指数 块(置换群论) 支持向量机 产量(工程) 天蓬 植被(病理学) 数学 地理 时间序列 统计 反射率 地图学 遥感 机器学习 叶面积指数 计算机科学 农学 医学 材料科学 几何学 物理 考古 光学 病理 冶金 生物
作者
Luz Angelica Suarez,Andrew Robson,James Brinkhoff
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:122: 103434-103434 被引量:2
标识
DOI:10.1016/j.jag.2023.103434
摘要

This study presents a comprehensive evaluation of seasonal, locational, and varietal variations in canopy reflectance responses in 315 commercial citrus blocks from three major growing regions in Australia. The dataset includes three different citrus types (Mandarin, Navel, Valencia) and 26 varieties. The aim is to utilize this combined information to better understand yield variation and develop improved forecasting models. Landsat satellite data spanning from October 2006 to February 2021 (1419 tiles) were used to derive reflectance values, and calculate four vegetation indices (NDVI, GNDVI, LSWI, and GCVI), for each citrus block. These indices were then analyzed alongside corresponding yield data, which consisted of 3660 individual yield records dating back to 2007. Two temporal resolutions were incorporated as predictors: spatio-temporal vegetation index time series (TS) aggregated every two months and annual time series of historical block-yield records. Six statistical and machine learning algorithms were calibrated using a leave-one-year-out cross-validation approach (LOYO CV) and validated for one-year forward prediction over a five-year period (2017–2021). The results highlight significant yield variations across years, alternate bearing patterns, and spatio-temporal changes in reflectance profiles influenced by seasonal conditions, varietal characteristics, and locations. The support vector machine (SVM) algorithm with a radial basis function kernel consistently outperformed other algorithms, indicating a non-linear relationship between citrus yield and predictors. The SVM model achieved an RMSE of 15.5 T ha−1, R2 of 0.88, MAE of 12.1 T ha−1, and MAPE of 29% in predicting block-yield across farms, varieties, and seasons. These prediction accuracy metrics demonstrate an improvement over current forecasting methods. Notably, the proposed approach utilizes freely available imagery, provides forecasts between two to nine months before harvest, and eliminates the need for infield counting of fruit load for image calibration. This approach provides an improved method for understanding seasonal yield variation and quantifying citrus block-yield, offering valuable insights for growers in harvest logistics, labor allocation, and resource management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Eden发布了新的文献求助10
1秒前
李爱国应助江户川新一采纳,获得10
1秒前
1秒前
jessie发布了新的文献求助10
1秒前
南知发布了新的文献求助10
1秒前
poblo完成签到,获得积分10
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
Rutin完成签到,获得积分10
3秒前
dong发布了新的文献求助10
3秒前
ding应助张顺飞采纳,获得10
3秒前
4秒前
lkc发布了新的文献求助10
4秒前
4秒前
5秒前
poblo发布了新的文献求助10
5秒前
5秒前
大鱼头发布了新的文献求助30
5秒前
bin发布了新的文献求助10
5秒前
彭于晏应助姜旭阳采纳,获得10
5秒前
夏蓉完成签到,获得积分10
5秒前
6秒前
科研通AI2S应助不可靠月亮采纳,获得10
6秒前
东郭一斩发布了新的文献求助10
6秒前
肥嘟嘟发布了新的文献求助10
6秒前
小青椒应助柍踏采纳,获得30
7秒前
8秒前
8秒前
清茶一抹发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
zz发布了新的文献求助10
9秒前
Owen应助zhangjianan采纳,获得10
9秒前
核桃发布了新的文献求助10
10秒前
称心薯片完成签到,获得积分10
10秒前
10秒前
沈欣冉完成签到,获得积分10
11秒前
科研通AI6.1应助abbyi采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5769365
求助须知:如何正确求助?哪些是违规求助? 5579538
关于积分的说明 15421436
捐赠科研通 4903042
什么是DOI,文献DOI怎么找? 2638103
邀请新用户注册赠送积分活动 1586002
关于科研通互助平台的介绍 1541075