清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Early-Season forecasting of citrus block-yield using time series remote sensing and machine learning: A case study in Australian orchards

归一化差异植被指数 块(置换群论) 支持向量机 产量(工程) 天蓬 植被(病理学) 数学 地理 时间序列 统计 反射率 地图学 遥感 机器学习 叶面积指数 计算机科学 农学 医学 材料科学 几何学 物理 考古 光学 病理 冶金 生物
作者
Luz Angelica Suarez,Andrew Robson,James Brinkhoff
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:122: 103434-103434 被引量:2
标识
DOI:10.1016/j.jag.2023.103434
摘要

This study presents a comprehensive evaluation of seasonal, locational, and varietal variations in canopy reflectance responses in 315 commercial citrus blocks from three major growing regions in Australia. The dataset includes three different citrus types (Mandarin, Navel, Valencia) and 26 varieties. The aim is to utilize this combined information to better understand yield variation and develop improved forecasting models. Landsat satellite data spanning from October 2006 to February 2021 (1419 tiles) were used to derive reflectance values, and calculate four vegetation indices (NDVI, GNDVI, LSWI, and GCVI), for each citrus block. These indices were then analyzed alongside corresponding yield data, which consisted of 3660 individual yield records dating back to 2007. Two temporal resolutions were incorporated as predictors: spatio-temporal vegetation index time series (TS) aggregated every two months and annual time series of historical block-yield records. Six statistical and machine learning algorithms were calibrated using a leave-one-year-out cross-validation approach (LOYO CV) and validated for one-year forward prediction over a five-year period (2017–2021). The results highlight significant yield variations across years, alternate bearing patterns, and spatio-temporal changes in reflectance profiles influenced by seasonal conditions, varietal characteristics, and locations. The support vector machine (SVM) algorithm with a radial basis function kernel consistently outperformed other algorithms, indicating a non-linear relationship between citrus yield and predictors. The SVM model achieved an RMSE of 15.5 T ha−1, R2 of 0.88, MAE of 12.1 T ha−1, and MAPE of 29% in predicting block-yield across farms, varieties, and seasons. These prediction accuracy metrics demonstrate an improvement over current forecasting methods. Notably, the proposed approach utilizes freely available imagery, provides forecasts between two to nine months before harvest, and eliminates the need for infield counting of fruit load for image calibration. This approach provides an improved method for understanding seasonal yield variation and quantifying citrus block-yield, offering valuable insights for growers in harvest logistics, labor allocation, and resource management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
煜琪完成签到 ,获得积分10
7秒前
wyt发布了新的文献求助10
12秒前
光亮的自行车完成签到 ,获得积分10
12秒前
巫马白亦完成签到,获得积分10
16秒前
Hiaoliem完成签到 ,获得积分10
16秒前
zhdjj完成签到 ,获得积分10
1分钟前
xfcy完成签到,获得积分0
1分钟前
紫陌完成签到,获得积分0
1分钟前
修水县1个科研人完成签到 ,获得积分10
1分钟前
zijingsy完成签到 ,获得积分10
1分钟前
xixi很困完成签到 ,获得积分10
1分钟前
marinemiao完成签到,获得积分10
1分钟前
萧水白应助marinemiao采纳,获得10
1分钟前
mrwang完成签到 ,获得积分10
1分钟前
1分钟前
www发布了新的文献求助10
1分钟前
2分钟前
研友_VZG7GZ应助利酱采纳,获得10
2分钟前
dajiejie完成签到 ,获得积分10
2分钟前
勤劳的颤完成签到 ,获得积分10
2分钟前
2分钟前
利酱发布了新的文献求助10
2分钟前
franca2005完成签到 ,获得积分10
2分钟前
www完成签到,获得积分10
3分钟前
雪妮完成签到 ,获得积分10
3分钟前
migi完成签到,获得积分10
3分钟前
张大星完成签到 ,获得积分10
3分钟前
liuzhifenshen完成签到,获得积分10
3分钟前
elisa828完成签到,获得积分10
3分钟前
Jack80发布了新的文献求助50
3分钟前
huiluowork完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
fff发布了新的文献求助10
4分钟前
loga80完成签到,获得积分10
5分钟前
二牛完成签到,获得积分10
5分钟前
星希完成签到 ,获得积分10
5分钟前
苏州九龙小7完成签到 ,获得积分10
5分钟前
芝麻完成签到,获得积分10
5分钟前
高分求助中
Sustainability in Tides Chemistry 1500
Handbook of the Mammals of the World – Volume 3: Primates 805
拟南芥模式识别受体参与调控抗病蛋白介导的ETI免疫反应的机制研究 550
Gerard de Lairesse : an artist between stage and studio 500
Digging and Dealing in Eighteenth-Century Rome 500
Queer Politics in Times of New Authoritarianisms: Popular Culture in South Asia 500
Manual of Sewer Condition Classification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3068193
求助须知:如何正确求助?哪些是违规求助? 2722162
关于积分的说明 7476072
捐赠科研通 2369138
什么是DOI,文献DOI怎么找? 1256228
科研通“疑难数据库(出版商)”最低求助积分说明 609518
版权声明 596835