Early-Season forecasting of citrus block-yield using time series remote sensing and machine learning: A case study in Australian orchards

归一化差异植被指数 块(置换群论) 支持向量机 产量(工程) 天蓬 植被(病理学) 数学 地理 时间序列 统计 反射率 地图学 遥感 机器学习 叶面积指数 计算机科学 农学 生物 医学 光学 物理 病理 考古 冶金 材料科学 几何学
作者
Luz Angelica Suarez,Andrew Robson,James Brinkhoff
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:122: 103434-103434 被引量:2
标识
DOI:10.1016/j.jag.2023.103434
摘要

This study presents a comprehensive evaluation of seasonal, locational, and varietal variations in canopy reflectance responses in 315 commercial citrus blocks from three major growing regions in Australia. The dataset includes three different citrus types (Mandarin, Navel, Valencia) and 26 varieties. The aim is to utilize this combined information to better understand yield variation and develop improved forecasting models. Landsat satellite data spanning from October 2006 to February 2021 (1419 tiles) were used to derive reflectance values, and calculate four vegetation indices (NDVI, GNDVI, LSWI, and GCVI), for each citrus block. These indices were then analyzed alongside corresponding yield data, which consisted of 3660 individual yield records dating back to 2007. Two temporal resolutions were incorporated as predictors: spatio-temporal vegetation index time series (TS) aggregated every two months and annual time series of historical block-yield records. Six statistical and machine learning algorithms were calibrated using a leave-one-year-out cross-validation approach (LOYO CV) and validated for one-year forward prediction over a five-year period (2017–2021). The results highlight significant yield variations across years, alternate bearing patterns, and spatio-temporal changes in reflectance profiles influenced by seasonal conditions, varietal characteristics, and locations. The support vector machine (SVM) algorithm with a radial basis function kernel consistently outperformed other algorithms, indicating a non-linear relationship between citrus yield and predictors. The SVM model achieved an RMSE of 15.5 T ha−1, R2 of 0.88, MAE of 12.1 T ha−1, and MAPE of 29% in predicting block-yield across farms, varieties, and seasons. These prediction accuracy metrics demonstrate an improvement over current forecasting methods. Notably, the proposed approach utilizes freely available imagery, provides forecasts between two to nine months before harvest, and eliminates the need for infield counting of fruit load for image calibration. This approach provides an improved method for understanding seasonal yield variation and quantifying citrus block-yield, offering valuable insights for growers in harvest logistics, labor allocation, and resource management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助Jack采纳,获得10
刚刚
开朗的钻石完成签到,获得积分10
1秒前
小枣发布了新的文献求助10
1秒前
Jj7完成签到,获得积分10
5秒前
菲菲发布了新的文献求助10
6秒前
8秒前
8秒前
9秒前
10秒前
碧蓝的老鼠完成签到,获得积分20
10秒前
10秒前
11秒前
科目三应助zp采纳,获得10
11秒前
刘鑫东完成签到,获得积分20
11秒前
super发布了新的文献求助30
12秒前
LLC发布了新的文献求助10
12秒前
传奇3应助文静达采纳,获得10
15秒前
JG完成签到 ,获得积分10
15秒前
三三四完成签到,获得积分10
16秒前
iwwwwwn发布了新的文献求助10
16秒前
zqq完成签到,获得积分10
16秒前
Giner发布了新的文献求助10
16秒前
17秒前
18秒前
18秒前
18秒前
tree完成签到,获得积分10
20秒前
adeno发布了新的文献求助10
22秒前
23秒前
zyq发布了新的文献求助10
24秒前
24秒前
zheer发布了新的文献求助30
24秒前
24秒前
CC完成签到 ,获得积分10
25秒前
彭于晏应助Natsume采纳,获得10
26秒前
彩色的芝麻完成签到 ,获得积分10
28秒前
28秒前
菲菲完成签到,获得积分20
28秒前
曹志毅发布了新的文献求助10
29秒前
qq完成签到,获得积分10
30秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
THE STRUCTURES OF 'SHR' AND 'YOU' IN MANDARIN CHINESE 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761949
求助须知:如何正确求助?哪些是违规求助? 3305642
关于积分的说明 10135083
捐赠科研通 3019747
什么是DOI,文献DOI怎么找? 1658374
邀请新用户注册赠送积分活动 792030
科研通“疑难数据库(出版商)”最低求助积分说明 754783