Early-Season forecasting of citrus block-yield using time series remote sensing and machine learning: A case study in Australian orchards

归一化差异植被指数 块(置换群论) 支持向量机 产量(工程) 天蓬 植被(病理学) 数学 地理 时间序列 统计 反射率 地图学 遥感 机器学习 叶面积指数 计算机科学 农学 医学 材料科学 几何学 物理 考古 光学 病理 冶金 生物
作者
Luz Angelica Suarez,Andrew Robson,James Brinkhoff
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:122: 103434-103434 被引量:2
标识
DOI:10.1016/j.jag.2023.103434
摘要

This study presents a comprehensive evaluation of seasonal, locational, and varietal variations in canopy reflectance responses in 315 commercial citrus blocks from three major growing regions in Australia. The dataset includes three different citrus types (Mandarin, Navel, Valencia) and 26 varieties. The aim is to utilize this combined information to better understand yield variation and develop improved forecasting models. Landsat satellite data spanning from October 2006 to February 2021 (1419 tiles) were used to derive reflectance values, and calculate four vegetation indices (NDVI, GNDVI, LSWI, and GCVI), for each citrus block. These indices were then analyzed alongside corresponding yield data, which consisted of 3660 individual yield records dating back to 2007. Two temporal resolutions were incorporated as predictors: spatio-temporal vegetation index time series (TS) aggregated every two months and annual time series of historical block-yield records. Six statistical and machine learning algorithms were calibrated using a leave-one-year-out cross-validation approach (LOYO CV) and validated for one-year forward prediction over a five-year period (2017–2021). The results highlight significant yield variations across years, alternate bearing patterns, and spatio-temporal changes in reflectance profiles influenced by seasonal conditions, varietal characteristics, and locations. The support vector machine (SVM) algorithm with a radial basis function kernel consistently outperformed other algorithms, indicating a non-linear relationship between citrus yield and predictors. The SVM model achieved an RMSE of 15.5 T ha−1, R2 of 0.88, MAE of 12.1 T ha−1, and MAPE of 29% in predicting block-yield across farms, varieties, and seasons. These prediction accuracy metrics demonstrate an improvement over current forecasting methods. Notably, the proposed approach utilizes freely available imagery, provides forecasts between two to nine months before harvest, and eliminates the need for infield counting of fruit load for image calibration. This approach provides an improved method for understanding seasonal yield variation and quantifying citrus block-yield, offering valuable insights for growers in harvest logistics, labor allocation, and resource management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
quhayley发布了新的文献求助30
刚刚
晚灯君发布了新的文献求助10
1秒前
demian发布了新的文献求助10
2秒前
2秒前
2秒前
Jasper应助hp571采纳,获得10
2秒前
2秒前
天天快乐应助李治海采纳,获得10
3秒前
可达燊完成签到,获得积分10
3秒前
今后应助小怪兽采纳,获得10
4秒前
小晟完成签到,获得积分10
4秒前
小鹿呀完成签到,获得积分10
4秒前
Connie完成签到,获得积分10
4秒前
uu发布了新的文献求助10
4秒前
一只鱼的故事完成签到,获得积分10
5秒前
流星完成签到,获得积分10
6秒前
liyizhe完成签到 ,获得积分10
6秒前
6秒前
徐风年完成签到,获得积分10
7秒前
猕猴桃发布了新的文献求助30
8秒前
8秒前
刘源发布了新的文献求助10
8秒前
9秒前
glanceofwind完成签到 ,获得积分10
9秒前
可达燊发布了新的文献求助50
9秒前
Akim应助kk采纳,获得10
9秒前
传奇3应助爱听歌的寄云采纳,获得10
10秒前
xW12123完成签到,获得积分10
10秒前
JamesPei应助三三采纳,获得10
10秒前
10秒前
10秒前
11秒前
hp571完成签到,获得积分10
12秒前
打击8完成签到 ,获得积分10
12秒前
baobao完成签到,获得积分10
12秒前
思源应助爱吃香菜采纳,获得10
14秒前
hp571发布了新的文献求助10
14秒前
15秒前
Ankher发布了新的文献求助10
15秒前
小叶发布了新的文献求助10
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987021
求助须知:如何正确求助?哪些是违规求助? 3529365
关于积分的说明 11244629
捐赠科研通 3267729
什么是DOI,文献DOI怎么找? 1803932
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808635