Dual-Diffusion: Dual Conditional Denoising Diffusion Probabilistic Models for Blind Super-Resolution Reconstruction in RSIs

增采样 计算机科学 核(代数) 概率逻辑 迭代重建 算法 人工智能 扩散 降噪 计算机视觉 图像(数学) 数学 物理 组合数学 热力学
作者
Mengze Xu,Jie Ma,Yuanyuan Zhu
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:20: 1-5 被引量:10
标识
DOI:10.1109/lgrs.2023.3304418
摘要

Previous super-resolution reconstruction (SR) works are always designed on the assumption that the degradation operation is fixed, such as bicubic downsampling. However, as for remote sensing images, some unexpected factors can cause the blurred visual performance, like weather factors, orbit altitude, etc. Blind SR methods are proposed to deal with various degradations. There are two main challenges of blind SR in RSIs: 1) the accurate estimation of degradation kernels; 2) the realistic image generation in the ill-posed problem. To rise to the challenge, we propose a novel blind SR framework based on dual conditional denoising diffusion probabilistic models (DDSR). In our work, we introduce conditional denoising diffusion probabilistic models (DDPM) from two aspects: kernel estimation progress and reconstruction progress, named as the dual-diffusion. As for kernel estimation progress, conditioned on low-resolution (LR) images, a new DDPM-based kernel predictor is constructed by studying the invertible mapping between the kernel distribution and the latent distribution. As for reconstruction progress, regarding the predicted degradation kernels and LR images as conditional information, we construct a DDPM-based reconstructor to learning the mapping from the LR images to HR images. Comprehensive experiments show the priority of our proposal compared with SOTA blind SR methods. Source Code and supplementary materials are available at https://github.com/Lincoln20030413/DDSR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吴女士完成签到,获得积分10
刚刚
领导范儿应助卢健辉采纳,获得10
1秒前
1秒前
雨雨完成签到,获得积分10
1秒前
12334完成签到,获得积分10
1秒前
obsession发布了新的文献求助10
2秒前
袁青寒完成签到,获得积分10
2秒前
高光飞完成签到 ,获得积分10
3秒前
duoyu应助晓湫采纳,获得20
3秒前
4秒前
在水一方应助陨yue采纳,获得10
4秒前
小二郎应助LKSkywalker采纳,获得10
5秒前
所所应助累哥采纳,获得10
6秒前
7秒前
量子星尘发布了新的文献求助150
7秒前
彭云完成签到,获得积分10
7秒前
9秒前
morii完成签到,获得积分10
9秒前
银子吃好的完成签到,获得积分10
10秒前
10秒前
11秒前
罐装冰块发布了新的文献求助10
11秒前
wanci应助11采纳,获得10
11秒前
cc123完成签到,获得积分10
12秒前
慕青应助wwww采纳,获得10
12秒前
累哥完成签到,获得积分20
13秒前
Zxx完成签到,获得积分10
13秒前
xu发布了新的文献求助10
14秒前
jacob258发布了新的文献求助10
14秒前
大模型应助lmg采纳,获得10
14秒前
辛卫铎发布了新的文献求助10
14秒前
薛定谔的猫完成签到,获得积分10
14秒前
乔治完成签到 ,获得积分10
14秒前
he发布了新的文献求助10
15秒前
西贝子子完成签到,获得积分10
15秒前
15秒前
英姑应助whisper1108采纳,获得10
15秒前
零陌关注了科研通微信公众号
16秒前
17秒前
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953820
求助须知:如何正确求助?哪些是违规求助? 3499685
关于积分的说明 11096658
捐赠科研通 3230222
什么是DOI,文献DOI怎么找? 1785901
邀请新用户注册赠送积分活动 869656
科研通“疑难数据库(出版商)”最低求助积分说明 801514