Dual-Diffusion: Dual Conditional Denoising Diffusion Probabilistic Models for Blind Super-Resolution Reconstruction in RSIs

增采样 计算机科学 核(代数) 概率逻辑 迭代重建 算法 人工智能 扩散 降噪 计算机视觉 图像(数学) 数学 物理 热力学 组合数学
作者
Mengze Xu,Jie Ma,Yuanyuan Zhu
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:20: 1-5 被引量:14
标识
DOI:10.1109/lgrs.2023.3304418
摘要

Previous super-resolution reconstruction (SR) works are always designed on the assumption that the degradation operation is fixed, such as bicubic downsampling. However, as for remote sensing images, some unexpected factors can cause the blurred visual performance, like weather factors, orbit altitude, etc. Blind SR methods are proposed to deal with various degradations. There are two main challenges of blind SR in RSIs: 1) the accurate estimation of degradation kernels; 2) the realistic image generation in the ill-posed problem. To rise to the challenge, we propose a novel blind SR framework based on dual conditional denoising diffusion probabilistic models (DDSR). In our work, we introduce conditional denoising diffusion probabilistic models (DDPM) from two aspects: kernel estimation progress and reconstruction progress, named as the dual-diffusion. As for kernel estimation progress, conditioned on low-resolution (LR) images, a new DDPM-based kernel predictor is constructed by studying the invertible mapping between the kernel distribution and the latent distribution. As for reconstruction progress, regarding the predicted degradation kernels and LR images as conditional information, we construct a DDPM-based reconstructor to learning the mapping from the LR images to HR images. Comprehensive experiments show the priority of our proposal compared with SOTA blind SR methods. Source Code and supplementary materials are available at https://github.com/Lincoln20030413/DDSR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
PiaoGuo完成签到,获得积分10
刚刚
daxiangqaq发布了新的文献求助10
1秒前
KING发布了新的文献求助10
2秒前
xmyang完成签到,获得积分10
3秒前
李健应助害羞的广山采纳,获得10
3秒前
烟花应助熊阿阿采纳,获得10
4秒前
希望天下0贩的0应助YUQILV采纳,获得10
4秒前
4秒前
5秒前
5秒前
5秒前
单薄咖啡豆完成签到 ,获得积分10
7秒前
8秒前
9秒前
9秒前
11秒前
11秒前
11秒前
星睿完成签到,获得积分10
11秒前
12秒前
avalanche应助Lfy采纳,获得50
12秒前
勤奋路由器完成签到,获得积分10
12秒前
研友_VZG7GZ应助科研通管家采纳,获得10
13秒前
KING完成签到,获得积分20
13秒前
852应助科研通管家采纳,获得10
13秒前
深情安青应助科研通管家采纳,获得10
13秒前
Owen应助科研通管家采纳,获得10
13秒前
13秒前
英俊的铭应助科研通管家采纳,获得10
13秒前
彭于晏应助科研通管家采纳,获得10
13秒前
情怀应助科研通管家采纳,获得10
13秒前
我是老大应助科研通管家采纳,获得30
13秒前
丘比特应助科研通管家采纳,获得10
13秒前
大个应助科研通管家采纳,获得100
13秒前
wx完成签到 ,获得积分10
13秒前
13秒前
打打应助科研通管家采纳,获得10
13秒前
丘比特应助科研通管家采纳,获得10
13秒前
完美世界应助科研通管家采纳,获得10
13秒前
赘婿应助科研通管家采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424649
求助须知:如何正确求助?哪些是违规求助? 4539035
关于积分的说明 14164752
捐赠科研通 4456058
什么是DOI,文献DOI怎么找? 2444033
邀请新用户注册赠送积分活动 1435127
关于科研通互助平台的介绍 1412469