Dual-Diffusion: Dual Conditional Denoising Diffusion Probabilistic Models for Blind Super-Resolution Reconstruction in RSIs

增采样 计算机科学 核(代数) 概率逻辑 迭代重建 算法 人工智能 扩散 降噪 计算机视觉 图像(数学) 数学 物理 热力学 组合数学
作者
Mengze Xu,Jie Ma,Yuanyuan Zhu
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:20: 1-5 被引量:14
标识
DOI:10.1109/lgrs.2023.3304418
摘要

Previous super-resolution reconstruction (SR) works are always designed on the assumption that the degradation operation is fixed, such as bicubic downsampling. However, as for remote sensing images, some unexpected factors can cause the blurred visual performance, like weather factors, orbit altitude, etc. Blind SR methods are proposed to deal with various degradations. There are two main challenges of blind SR in RSIs: 1) the accurate estimation of degradation kernels; 2) the realistic image generation in the ill-posed problem. To rise to the challenge, we propose a novel blind SR framework based on dual conditional denoising diffusion probabilistic models (DDSR). In our work, we introduce conditional denoising diffusion probabilistic models (DDPM) from two aspects: kernel estimation progress and reconstruction progress, named as the dual-diffusion. As for kernel estimation progress, conditioned on low-resolution (LR) images, a new DDPM-based kernel predictor is constructed by studying the invertible mapping between the kernel distribution and the latent distribution. As for reconstruction progress, regarding the predicted degradation kernels and LR images as conditional information, we construct a DDPM-based reconstructor to learning the mapping from the LR images to HR images. Comprehensive experiments show the priority of our proposal compared with SOTA blind SR methods. Source Code and supplementary materials are available at https://github.com/Lincoln20030413/DDSR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孤独的明雪完成签到,获得积分10
2秒前
默默善愁完成签到,获得积分10
2秒前
3秒前
花花发布了新的文献求助10
4秒前
年年年年发布了新的文献求助10
4秒前
6秒前
6秒前
6秒前
一支菜馅儿馄饨完成签到,获得积分10
8秒前
垃圾智造者完成签到,获得积分10
8秒前
9秒前
酷波er应助张张采纳,获得10
10秒前
量子星尘发布了新的文献求助30
10秒前
Tang完成签到,获得积分10
11秒前
12秒前
老实幻姬发布了新的文献求助10
12秒前
12秒前
zxxxx发布了新的文献求助10
13秒前
叽里呱啦完成签到 ,获得积分10
13秒前
yyjdtc完成签到,获得积分10
14秒前
蓝华完成签到 ,获得积分10
14秒前
yrj完成签到 ,获得积分10
14秒前
聪慧咖啡豆完成签到,获得积分10
14秒前
Leticia发布了新的文献求助10
15秒前
情怀应助香蕉半邪采纳,获得10
15秒前
微风完成签到,获得积分10
16秒前
Lee发布了新的文献求助10
16秒前
17秒前
17秒前
17秒前
多吃青菜完成签到,获得积分10
17秒前
PhDLi完成签到,获得积分10
17秒前
18秒前
19秒前
20秒前
20秒前
agestern完成签到,获得积分10
21秒前
hihi发布了新的文献求助10
22秒前
车访枫完成签到,获得积分10
22秒前
lqq发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5717929
求助须知:如何正确求助?哪些是违规求助? 5249249
关于积分的说明 15283791
捐赠科研通 4867991
什么是DOI,文献DOI怎么找? 2614002
邀请新用户注册赠送积分活动 1563914
关于科研通互助平台的介绍 1521377