Dual-Diffusion: Dual Conditional Denoising Diffusion Probabilistic Models for Blind Super-Resolution Reconstruction in RSIs

增采样 计算机科学 核(代数) 概率逻辑 迭代重建 算法 人工智能 扩散 降噪 计算机视觉 图像(数学) 数学 物理 热力学 组合数学
作者
Mengze Xu,Jie Ma,Yuanyuan Zhu
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:20: 1-5 被引量:14
标识
DOI:10.1109/lgrs.2023.3304418
摘要

Previous super-resolution reconstruction (SR) works are always designed on the assumption that the degradation operation is fixed, such as bicubic downsampling. However, as for remote sensing images, some unexpected factors can cause the blurred visual performance, like weather factors, orbit altitude, etc. Blind SR methods are proposed to deal with various degradations. There are two main challenges of blind SR in RSIs: 1) the accurate estimation of degradation kernels; 2) the realistic image generation in the ill-posed problem. To rise to the challenge, we propose a novel blind SR framework based on dual conditional denoising diffusion probabilistic models (DDSR). In our work, we introduce conditional denoising diffusion probabilistic models (DDPM) from two aspects: kernel estimation progress and reconstruction progress, named as the dual-diffusion. As for kernel estimation progress, conditioned on low-resolution (LR) images, a new DDPM-based kernel predictor is constructed by studying the invertible mapping between the kernel distribution and the latent distribution. As for reconstruction progress, regarding the predicted degradation kernels and LR images as conditional information, we construct a DDPM-based reconstructor to learning the mapping from the LR images to HR images. Comprehensive experiments show the priority of our proposal compared with SOTA blind SR methods. Source Code and supplementary materials are available at https://github.com/Lincoln20030413/DDSR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
阿卡林完成签到,获得积分10
刚刚
我爱乒乓球完成签到 ,获得积分10
刚刚
李生姜发布了新的文献求助10
刚刚
迷人的石头完成签到,获得积分20
刚刚
专一的白萱完成签到 ,获得积分10
1秒前
搜集达人应助婷儿采纳,获得10
1秒前
1秒前
NexusExplorer应助27采纳,获得10
1秒前
娇气的金鱼完成签到,获得积分10
1秒前
小蘑菇应助wjj910206采纳,获得10
2秒前
华仔应助愤怒的含雁采纳,获得10
2秒前
领导范儿应助Superg采纳,获得10
2秒前
mango完成签到,获得积分10
3秒前
幸福墨镜发布了新的文献求助10
3秒前
龍越发布了新的文献求助10
4秒前
于林强发布了新的文献求助10
4秒前
科研通AI6应助yinhe028采纳,获得10
4秒前
一哲发布了新的文献求助20
4秒前
4秒前
linkinparkcs发布了新的文献求助30
4秒前
TTTTT完成签到,获得积分20
5秒前
帆帆帆发布了新的文献求助10
5秒前
酷波er应助历历采纳,获得10
6秒前
6秒前
7秒前
MinQi完成签到,获得积分10
7秒前
7秒前
默默的骁完成签到,获得积分10
7秒前
7秒前
科研通AI6应助夏小胖采纳,获得10
8秒前
8秒前
伊丽莎白打工完成签到,获得积分10
8秒前
甜蜜靖雁完成签到 ,获得积分10
9秒前
科研通AI6应助一YI采纳,获得10
9秒前
9秒前
qing完成签到,获得积分10
9秒前
9秒前
CipherSage应助三徙教采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665352
求助须知:如何正确求助?哪些是违规求助? 4876309
关于积分的说明 15113352
捐赠科研通 4824419
什么是DOI,文献DOI怎么找? 2582766
邀请新用户注册赠送积分活动 1536717
关于科研通互助平台的介绍 1495328