已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Atom-centered machine-learning force field package

Python(编程语言) 计算机科学 Fortran语言 计算科学 力场(虚构) 算法 人工智能 机器学习 程序设计语言
作者
Lei Li,Ryan A. Ciufo,Jiyoung Lee,Chuan Zhou,Bo Lin,Jae‐Young Cho,Naman Katyal,Graeme Henkelman
出处
期刊:Computer Physics Communications [Elsevier BV]
卷期号:292: 108883-108883 被引量:6
标识
DOI:10.1016/j.cpc.2023.108883
摘要

In recent years, machine learning algorithms have been widely used for constructing force fields with an accuracy of ab initio methods and the efficiency of classical force fields. Here, we developed a python-based atom-centered machine-learning force field (PyAMFF) package to provide a simple and efficient platform for fitting and using machine learning force fields by implementing an atom-centered neural-network algorithm with Behler-Parrinello symmetry functions as structural fingerprints. The following three features are included in PyAMFF: (1) integrated Fortran modules for fast fingerprint calculations and Python modules for user-friendly integration through scripts and facile extension of future algorithms; (2) a pure Fortran backend to interface with the software, including the long-timescale dynamic simulation package EON, enabling both molecular dynamic simulations and adaptive kinetic Monte Carlo simulations with machine-learning force fields; and (3) integration with the Atomic Simulation Environment package for active learning and ML-based algorithm development. Here, we demonstrate an efficient parallelization of PyAMFF in terms of CPU and memory usage and show that the Fortran-based PyAMFF calculator exhibits a linear scaling relationship with the number of symmetry functions and the system size. Program title: python-based atom-centered machine-learning force field (PyAMFF) CPC Library link to program files: https://doi.org/10.17632/fsn6dkcvrv.1 Developer's repository link: https://gitlab.com/pyamff/pyamff Licensing provisions: Apache License, 2.0 Nature of problem: Determine an approximate (surrogate) model based upon atomic forces and energies from density functional theory (DFT). With a surrogate model that is less computationally expensive to evaluate than DFT, there can be a rapid exploration of the potential energy surface, accelerated optimization to minima and saddle points, and ultimately, accelerated design of active materials where the kinetics are key to the material function. Solution method: The atomic environments of training data are calculated in terms of Behler-Parrinello fingerprints. These fingerprints are passed to a neural network which is trained to reproduce the energy and force of the training data. A parallel implementation and Fortran backend allow for efficient training and calculation of the resulting surrogate model. Examples of long-time simulations of materials on the surrogate model surfaces are provided.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
WXHL完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
伶俐的乾发布了新的文献求助10
3秒前
xwwx完成签到 ,获得积分10
5秒前
sunflowers完成签到 ,获得积分10
5秒前
小刘爱学习完成签到 ,获得积分10
5秒前
玖月完成签到 ,获得积分10
5秒前
小远完成签到 ,获得积分10
6秒前
zdq完成签到,获得积分10
6秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
orixero应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
大个应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
ifast完成签到 ,获得积分10
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
gmchen完成签到,获得积分10
8秒前
科研通AI5应助ytttt采纳,获得30
8秒前
Felicity完成签到 ,获得积分10
8秒前
记得吃蔬菜完成签到,获得积分10
8秒前
Levin发布了新的文献求助30
8秒前
英俊的铭应助山河入梦来采纳,获得10
9秒前
天人合一完成签到,获得积分0
9秒前
清脆的飞丹完成签到,获得积分10
9秒前
认真的代柔完成签到,获得积分10
9秒前
勤奋帅帅完成签到,获得积分10
9秒前
wsazah完成签到,获得积分10
9秒前
大小罐子完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
啊哒吸哇完成签到,获得积分10
10秒前
qianzhihe完成签到,获得积分10
10秒前
10秒前
Vision820完成签到,获得积分10
10秒前
内向茉莉完成签到,获得积分10
11秒前
lin发布了新的文献求助10
11秒前
iorpi完成签到,获得积分10
12秒前
伶俐的金连完成签到 ,获得积分10
12秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666266
求助须知:如何正确求助?哪些是违规求助? 3225309
关于积分的说明 9762492
捐赠科研通 2935243
什么是DOI,文献DOI怎么找? 1607513
邀请新用户注册赠送积分活动 759242
科研通“疑难数据库(出版商)”最低求助积分说明 735185

今日热心研友

NZH
20
nenoaowu
2
MchemG
2
pluto
10
Xiaoxiao
10
安静的远山
1
注:热心度 = 本日应助数 + 本日被采纳获取积分÷10