表土
底土
土壤碳
农学
土壤健康
耕作
环境科学
矿化(土壤科学)
土壤有机质
土壤水分
土壤科学
生物
作者
Qian Wang,Shixiu Zhang,Mengting Zhang,Ping Liu,Neil McLaughlin,Shengyong Jia,Xuewen Chen,Yan Zhang,Aizhen Liang
标识
DOI:10.1016/j.still.2023.105859
摘要
Quantifying the potential of soil carbon (C) mineralization improves our understanding of changes in soil health in agricultural ecosystems. Previous studies rarely linked the trait of interactions inherent in soil communities to soil C mineralization rate (Cmin). This study provides field-based evidence of tillage-driven changes in biological associations and their impacts on soil Cmin. Data obtained from a long-term (15 years) conservation tillage field experiment in Northeast China, and showed that the soil Cmin (per unit soil mass) and specific Cmin (per unit soil C) were 79% and 33% higher in topsoil (0–5 cm) and 27% and 24% lower in subsoil (5–20 cm) under no tillage with residue (NT) compared to conventional tillage with residue removal (CT). Meanwhile, in topsoil, NT strengthened biotic associations in June and August; in subsoil, a more complex network was found in CT. In topsoil, soil Cmin was not related to soil biotic associations, but was positively (P < 0.05) correlated with soil organic C (SOC) and certain biotic properties (e.g., MBC (microbial biomass carbon), microbial phospholipid fatty acid (PLFA) biomass and the relative abundance of AMF (arbuscular mycorrhizal fungi) and PP (plant-parasites)). Among them, the increases in SOC under NT exerted a positive effect on soil Cmin directly or indirectly through mediating biotic biomass properties (MBC, the PLFA biomass of all microbial groups and BF biomass). In contrast, in subsoil, soil Cmin was positively (P < 0.05) correlated with soil biotic associations, SOC and the relative abundance of PP. Notably, the increase in soil Cmin value was mainly achieved by strengthening biological associations. These findings provide novel insights into the role of soil biota in C mineralization, highlighting the diverse mechanisms underlying soil Cmin in response to tillage systems at different soil depths.
科研通智能强力驱动
Strongly Powered by AbleSci AI