A new framework for water quality forecasting coupling causal inference, time-frequency analysis and uncertainty quantification

稳健性(进化) 计算机科学 推论 贝叶斯推理 数据挖掘 因果推理 小波 航程(航空) 连接词(语言学) 机器学习 人工智能 贝叶斯概率 概率预测 时间序列 残余物 统计 计量经济学 算法 数学 工程类 概率逻辑 生物化学 化学 基因 航空航天工程
作者
Chi Zhang,Xizhi Nong,Kourosh Behzadian,Luiza C. Campos,Lihua Chen,Dongguo Shao
出处
期刊:Journal of Environmental Management [Elsevier BV]
卷期号:350: 119613-119613 被引量:13
标识
DOI:10.1016/j.jenvman.2023.119613
摘要

Accurate forecasting of water quality variables in river systems is crucial for relevant administrators to identify potential water quality degradation issues and take countermeasures promptly. However, pure data-driven forecasting models are often insufficient to deal with the highly varying periodicity of water quality in today's more complex environment. This study presents a new holistic framework for time-series forecasting of water quality parameters by combining advanced deep learning algorithms (i.e., Long Short-Term Memory (LSTM) and Informer) with causal inference, time-frequency analysis, and uncertainty quantification. The framework was demonstrated for total nitrogen (TN) forecasting in the largest artificial lakes in Asia (i.e., the Danjiangkou Reservoir, China) with six-year monitoring data from January 2017 to June 2022. The results showed that the pre-processing techniques based on causal inference and wavelet decomposition can significantly improve the performance of deep learning algorithms. Compared to the individual LSTM and Informer models, wavelet-coupled approaches diminished well the apparent forecasting errors of TN concentrations, with 24.39%, 32.68%, and 41.26% reduction at most in the average, standard deviation, and maximum values of the errors, respectively. In addition, a post-processing algorithm based on the Copula function and Bayesian theory was designed to quantify the uncertainty of predictions. With the help of this algorithm, each deterministic prediction of our model can correspond to a range of possible outputs. The 95% forecast confidence interval covered almost all the observations, which proves a measure of the reliability and robustness of the predictions. This study provides rich scientific references for applying advanced data-driven methods in time-series forecasting tasks and a practical methodological framework for water resources management and similar projects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小文发布了新的文献求助10
刚刚
1秒前
weatsun发布了新的文献求助10
2秒前
无风完成签到,获得积分10
3秒前
Hollow完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
Fyyyy完成签到 ,获得积分10
6秒前
无风发布了新的文献求助20
7秒前
青云完成签到,获得积分10
7秒前
小文完成签到,获得积分10
10秒前
科研通AI5应助Rheane采纳,获得10
13秒前
Zz完成签到 ,获得积分10
15秒前
GrandeAmore完成签到,获得积分10
15秒前
勇往直前完成签到,获得积分10
18秒前
龙泉完成签到 ,获得积分10
20秒前
蓝调子发布了新的文献求助10
22秒前
依米若米完成签到,获得积分10
25秒前
25秒前
26秒前
科目三应助勇往直前采纳,获得10
26秒前
Nick完成签到,获得积分10
28秒前
深情安青应助无情向薇采纳,获得10
29秒前
mingming发布了新的文献求助10
31秒前
tassssadar完成签到,获得积分10
37秒前
快乐若颜关注了科研通微信公众号
37秒前
方小方不慌完成签到,获得积分10
38秒前
陈杭鑫应助大白鹅采纳,获得10
39秒前
40秒前
Ren应助WIK采纳,获得10
40秒前
理想国的过客完成签到,获得积分10
41秒前
ningna发布了新的文献求助30
44秒前
香蕉觅云应助小憩采纳,获得10
50秒前
wlp鹏完成签到,获得积分10
50秒前
bkagyin应助晒黑的雪碧采纳,获得10
50秒前
柯幼萱完成签到,获得积分10
51秒前
落幕完成签到,获得积分10
51秒前
袁梦婷完成签到,获得积分10
53秒前
ningna完成签到,获得积分10
54秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993104
求助须知:如何正确求助?哪些是违规求助? 3534001
关于积分的说明 11264385
捐赠科研通 3273705
什么是DOI,文献DOI怎么找? 1806142
邀请新用户注册赠送积分活动 883016
科研通“疑难数据库(出版商)”最低求助积分说明 809652