A new framework for water quality forecasting coupling causal inference, time-frequency analysis and uncertainty quantification

稳健性(进化) 计算机科学 推论 贝叶斯推理 数据挖掘 因果推理 小波 航程(航空) 连接词(语言学) 机器学习 人工智能 贝叶斯概率 概率预测 时间序列 残余物 统计 计量经济学 算法 数学 工程类 概率逻辑 生物化学 化学 基因 航空航天工程
作者
Chi Zhang,Xizhi Nong,Kourosh Behzadian,Luiza C. Campos,Lihua Chen,Dongguo Shao
出处
期刊:Journal of Environmental Management [Elsevier]
卷期号:350: 119613-119613 被引量:4
标识
DOI:10.1016/j.jenvman.2023.119613
摘要

Accurate forecasting of water quality variables in river systems is crucial for relevant administrators to identify potential water quality degradation issues and take countermeasures promptly. However, pure data-driven forecasting models are often insufficient to deal with the highly varying periodicity of water quality in today's more complex environment. This study presents a new holistic framework for time-series forecasting of water quality parameters by combining advanced deep learning algorithms (i.e., Long Short-Term Memory (LSTM) and Informer) with causal inference, time-frequency analysis, and uncertainty quantification. The framework was demonstrated for total nitrogen (TN) forecasting in the largest artificial lakes in Asia (i.e., the Danjiangkou Reservoir, China) with six-year monitoring data from January 2017 to June 2022. The results showed that the pre-processing techniques based on causal inference and wavelet decomposition can significantly improve the performance of deep learning algorithms. Compared to the individual LSTM and Informer models, wavelet-coupled approaches diminished well the apparent forecasting errors of TN concentrations, with 24.39%, 32.68%, and 41.26% reduction at most in the average, standard deviation, and maximum values of the errors, respectively. In addition, a post-processing algorithm based on the Copula function and Bayesian theory was designed to quantify the uncertainty of predictions. With the help of this algorithm, each deterministic prediction of our model can correspond to a range of possible outputs. The 95% forecast confidence interval covered almost all the observations, which proves a measure of the reliability and robustness of the predictions. This study provides rich scientific references for applying advanced data-driven methods in time-series forecasting tasks and a practical methodological framework for water resources management and similar projects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
彭于晏应助Am采纳,获得10
刚刚
Tomice发布了新的文献求助10
刚刚
刚刚
球球完成签到,获得积分10
刚刚
1秒前
李健应助兰彻采纳,获得10
1秒前
共享精神应助嘎嘎采纳,获得10
2秒前
2秒前
归海一刀完成签到,获得积分10
2秒前
白华苍松发布了新的文献求助10
3秒前
球球发布了新的文献求助10
3秒前
JiaqiDijon发布了新的文献求助10
3秒前
QUEENIELIANG发布了新的文献求助10
3秒前
研友_ZbPmmL完成签到,获得积分10
4秒前
聪慧黑米发布了新的文献求助10
4秒前
sheila发布了新的文献求助10
4秒前
5秒前
findmoon发布了新的文献求助10
5秒前
852应助羽鸮采纳,获得10
5秒前
乐乐完成签到,获得积分10
7秒前
CipherSage应助Hana采纳,获得10
7秒前
wangzai111发布了新的文献求助10
7秒前
贝壳完成签到,获得积分10
8秒前
香蕉觅云应助呵呵咯咯哒采纳,获得10
9秒前
9秒前
10秒前
11秒前
蓝胖子plus完成签到,获得积分10
13秒前
共享精神应助自信鞯采纳,获得10
13秒前
星辰大海应助Lobectomy采纳,获得10
13秒前
13秒前
羽鸮完成签到,获得积分10
14秒前
聪慧黑米完成签到,获得积分20
14秒前
闾丘黎昕发布了新的文献求助10
14秒前
羽鸮发布了新的文献求助10
16秒前
findmoon完成签到,获得积分10
17秒前
19秒前
池暮江吟春完成签到,获得积分0
19秒前
嘎嘎发布了新的文献求助10
20秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158072
求助须知:如何正确求助?哪些是违规求助? 2809436
关于积分的说明 7881999
捐赠科研通 2467898
什么是DOI,文献DOI怎么找? 1313783
科研通“疑难数据库(出版商)”最低求助积分说明 630538
版权声明 601943