High precision 3D measurement with few images based on deep learning

计算机科学 残余物 结构光三维扫描仪 人工智能 深度学习 算法 仿形(计算机编程) 块(置换群论) 计算机视觉 模式识别(心理学) 数学 几何学 操作系统 扫描仪
作者
Yang Zhang,Yu Zhang,Jinlong Li,Tao Tang
标识
DOI:10.1117/12.3006803
摘要

Fringe projection profiling (FPP) is a technique to obtain the three-dimensional shape of an object by projecting periodic fringes onto its surface and analyzing the modulated fringes.The goal of this technique is to quickly and accurately obtain the three-dimensional shape of an object with as few fringe patterns as possible. This paper combines the fringe analysis steps of fringe projection profiling and deep learning, the proposed DARUNet network (Dense and Residual U-Net) introduces Dense Block and Residual Block on the basis of U-Net. Only three modulated fringe patterns with different frequencies need to be captured as the input of the DARUNet network, the network outputs the numerator and denominator of the wrapped phase corresponding to each frequency. After some post-processing, the three-dimensional shape of the object can be obtained. Deep learning relies on high-quality datasets, so this paper compares two methods for temporal phase unwrapping: Multi-frequency (hierarchical) and Multi-wavelength (heterodyne).The Multi-frequency method, which demonstrated superior performance, was chosen to create a high-precision 3D measurement dataset. Experiments show that the proposed network has higher precision in predicting the wrapped phase than U-Net and its series networks, and predicting the numerator and denominator of wrapped phase by fringes is also the optimal route for 3D reconstruction technology based on deep learning, this method achieves a high level of precision with a phase error of less than 0.1 radians and a depth error of less than 0.3 mm. Therefore, the method employed in this paper enables high-precision 3D measurements using only three frames of fringe patterns.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
上官若男应助lsq108采纳,获得10
1秒前
1秒前
我是老大应助高兴的天蓝采纳,获得10
2秒前
阿达发布了新的文献求助10
2秒前
wanci应助煤灰采纳,获得10
3秒前
要减肥半邪完成签到,获得积分10
4秒前
安安发布了新的文献求助10
4秒前
leolee完成签到 ,获得积分10
4秒前
大模型应助huajianjiuxing采纳,获得10
5秒前
张茜完成签到,获得积分10
6秒前
上官若男应助onlooker采纳,获得30
7秒前
中外都督诸军事ggt完成签到,获得积分10
7秒前
7秒前
乐乐应助潇洒的如蓉采纳,获得10
7秒前
清爽达发布了新的文献求助30
8秒前
8秒前
完美世界应助炙热晓露采纳,获得10
9秒前
9秒前
10秒前
MateoX完成签到 ,获得积分10
11秒前
可爱的函函应助无辜善愁采纳,获得10
11秒前
大模型应助daishuheng采纳,获得10
12秒前
Jasper应助高大的曼寒采纳,获得10
12秒前
liyutong发布了新的文献求助10
12秒前
JamesPei应助传统的盈采纳,获得10
12秒前
13秒前
13秒前
13秒前
13秒前
13秒前
科研通AI2S应助swing采纳,获得10
13秒前
14秒前
lsq108完成签到,获得积分10
16秒前
CipherSage应助哦莫采纳,获得10
16秒前
momo发布了新的文献求助10
16秒前
小马发布了新的文献求助50
17秒前
CodeCraft应助熊熊熊采纳,获得10
17秒前
lsq108发布了新的文献求助10
18秒前
19秒前
高分求助中
Sustainability in Tides Chemistry 2000
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3110246
求助须知:如何正确求助?哪些是违规求助? 2760739
关于积分的说明 7661712
捐赠科研通 2415452
什么是DOI,文献DOI怎么找? 1281912
科研通“疑难数据库(出版商)”最低求助积分说明 618814
版权声明 599472