High precision 3D measurement with few images based on deep learning

计算机科学 残余物 结构光三维扫描仪 人工智能 深度学习 算法 仿形(计算机编程) 块(置换群论) 计算机视觉 模式识别(心理学) 数学 几何学 扫描仪 操作系统
作者
Yang Zhang,Yu Zhang,Jinlong Li,Tao Tang
标识
DOI:10.1117/12.3006803
摘要

Fringe projection profiling (FPP) is a technique to obtain the three-dimensional shape of an object by projecting periodic fringes onto its surface and analyzing the modulated fringes.The goal of this technique is to quickly and accurately obtain the three-dimensional shape of an object with as few fringe patterns as possible. This paper combines the fringe analysis steps of fringe projection profiling and deep learning, the proposed DARUNet network (Dense and Residual U-Net) introduces Dense Block and Residual Block on the basis of U-Net. Only three modulated fringe patterns with different frequencies need to be captured as the input of the DARUNet network, the network outputs the numerator and denominator of the wrapped phase corresponding to each frequency. After some post-processing, the three-dimensional shape of the object can be obtained. Deep learning relies on high-quality datasets, so this paper compares two methods for temporal phase unwrapping: Multi-frequency (hierarchical) and Multi-wavelength (heterodyne).The Multi-frequency method, which demonstrated superior performance, was chosen to create a high-precision 3D measurement dataset. Experiments show that the proposed network has higher precision in predicting the wrapped phase than U-Net and its series networks, and predicting the numerator and denominator of wrapped phase by fringes is also the optimal route for 3D reconstruction technology based on deep learning, this method achieves a high level of precision with a phase error of less than 0.1 radians and a depth error of less than 0.3 mm. Therefore, the method employed in this paper enables high-precision 3D measurements using only three frames of fringe patterns.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
111完成签到 ,获得积分10
2秒前
忧心的从蓉完成签到,获得积分10
3秒前
3秒前
李希妍完成签到,获得积分10
4秒前
迪克牛仔完成签到 ,获得积分10
4秒前
Jasper应助精明寻梅采纳,获得10
5秒前
米线儿完成签到,获得积分10
6秒前
甜桃完成签到,获得积分10
6秒前
6秒前
7秒前
CAOHOU应助q792309106采纳,获得10
7秒前
8秒前
8秒前
悦耳静枫发布了新的文献求助10
10秒前
烟花应助果粒多采纳,获得10
10秒前
潘善若发布了新的文献求助10
11秒前
廉凌波发布了新的文献求助10
11秒前
赘婿应助crazy采纳,获得10
11秒前
喻义梅关注了科研通微信公众号
12秒前
精明寻梅完成签到,获得积分10
12秒前
行远完成签到,获得积分10
13秒前
科目三应助感动黄豆采纳,获得10
14秒前
xueyu发布了新的文献求助10
14秒前
钱宇成完成签到,获得积分20
15秒前
修道院的豌豆完成签到,获得积分10
15秒前
廉凌波完成签到,获得积分10
16秒前
Rondab应助行远采纳,获得10
18秒前
18秒前
SYLH应助showmaker采纳,获得20
19秒前
19秒前
领导范儿应助FXQ123_范采纳,获得10
19秒前
Afaq完成签到,获得积分20
20秒前
油饼发布了新的文献求助30
22秒前
潘善若发布了新的文献求助10
22秒前
ganxinran发布了新的文献求助10
22秒前
24秒前
24秒前
26秒前
果粒多发布了新的文献求助10
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989263
求助须知:如何正确求助?哪些是违规求助? 3531418
关于积分的说明 11253814
捐赠科研通 3270066
什么是DOI,文献DOI怎么找? 1804884
邀请新用户注册赠送积分活动 882084
科研通“疑难数据库(出版商)”最低求助积分说明 809136