Harnessing Neural Networks for Elucidating X-ray Absorption Structure–Spectrum Relationships in Amorphous Carbon

氧烷 可解释性 无定形固体 粘结长度 吸收(声学) 谱线 材料科学 代表(政治) 化学物理 生物系统 计算机科学 化学 结晶学 人工智能 物理 晶体结构 天文 复合材料 政治学 法学 政治 生物
作者
Hyuna Kwon,Wenyu Sun,Tim Hsu,Wonseok Jeong,Fikret Aydin,Shubham Sharma,Fanchen Meng,Matthew R. Carbone,Xiao Chen,Deyu Lu,Liwen F. Wan,Michael H. Nielsen,Tuan Anh Pham
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
卷期号:127 (33): 16473-16484 被引量:9
标识
DOI:10.1021/acs.jpcc.3c02029
摘要

Improved understanding of structural and chemical properties through local experimental probes, such as X-ray absorption near-edge structure (XANES) spectroscopy, is crucial for the understanding and design of functional materials. In recent years, significant advancements have been made in the development of data science approaches for the automated interpretation of XANES structure–spectrum relationships. However, existing studies have primarily focused on crystalline solids and small molecules, while fewer efforts have been devoted to disordered systems. Thus, in this work, we demonstrate the development of neural network models for predicting and interpreting XANES spectra of amorphous carbon (a-C) from local structural descriptors. Comparison between different structural descriptors expectedly shows that the inclusion of both bond length and bond angle information is necessary for an accurate prediction of the spectra. Among the descriptors considered in this work, we find that the local many-body tensor representation yields the highest accuracy and greatest interpretability so that it can be leveraged to understand the importance of structural motifs in determining XANES spectra. We also discuss performance of neural network models for predicting both local structure features, such as bond lengths and bond angles, and global chemical composition, such as the sp:sp2:sp3 ratio.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助小刘医生采纳,获得10
1秒前
1秒前
practice发布了新的文献求助10
2秒前
szh123发布了新的文献求助10
2秒前
朴素妙梦完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
bluechen800205完成签到,获得积分10
4秒前
迷你的可仁完成签到,获得积分10
4秒前
4秒前
4秒前
liu123456完成签到,获得积分10
5秒前
虚心的羿发布了新的文献求助10
5秒前
6秒前
ccc完成签到,获得积分10
6秒前
星辰大海应助朴素妙梦采纳,获得10
7秒前
7秒前
烟花应助Voloid采纳,获得20
7秒前
7秒前
晶坚强完成签到,获得积分10
8秒前
ycd完成签到,获得积分20
8秒前
华仔应助lyh采纳,获得10
8秒前
8秒前
Zhy完成签到,获得积分10
8秒前
袁123完成签到,获得积分10
9秒前
茅十八完成签到,获得积分10
9秒前
linhuafeng发布了新的文献求助10
9秒前
无花果应助可恶的文献采纳,获得10
10秒前
几又完成签到,获得积分10
10秒前
天天快乐应助Jaron0080采纳,获得10
10秒前
11秒前
Jiangzhibing发布了新的文献求助20
11秒前
11秒前
学习完成签到,获得积分10
12秒前
ins发布了新的文献求助10
12秒前
风车车完成签到,获得积分10
13秒前
13秒前
13秒前
认真的火发布了新的文献求助10
13秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960824
求助须知:如何正确求助?哪些是违规求助? 3507059
关于积分的说明 11133511
捐赠科研通 3239361
什么是DOI,文献DOI怎么找? 1790107
邀请新用户注册赠送积分活动 872160
科研通“疑难数据库(出版商)”最低求助积分说明 803149