APFed: Anti-Poisoning Attacks in Privacy-Preserving Heterogeneous Federated Learning

计算机科学 利用 稳健性(进化) 聚类分析 联合学习 对手 分布式计算 计算机安全 信息隐私 水准点(测量) 计算机网络 数据挖掘 人工智能 生物化学 基因 大地测量学 化学 地理
作者
Xiao Chen,Haining Yu,Xiaohua Jia,Xiangzhan Yu
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:18: 5749-5761 被引量:3
标识
DOI:10.1109/tifs.2023.3315125
摘要

Federated learning (FL) is an emerging paradigm of privacy-preserving distributed machine learning that effectively deals with the privacy leakage problem by utilizing cryptographic primitives. However, how to prevent poisoning attacks in distributed situations has recently become a major FL concern. Indeed, an adversary can manipulate multiple edge nodes and submit malicious gradients to disturb the global model's availability. Currently, most existing works rely on an Independently Identical Distribution (IID) situation and identify malicious gradients using plaintext. However, we demonstrates that current works cannot handle the data heterogeneity scenario challenges and that publishing unencrypted gradients imposes significant privacy leakage problems. Therefore, we develop APFed, a layered privacy-preserving defense mechanism that significantly mitigates the effects of poisoning attacks in data heterogeneity scenarios. Specifically, we exploit HE as the underlying technique and employ the median coordinate as the benchmark. Subsequently, we propose a secure cosine similarity scheme to identify poisonous gradients, and we innovatively use clustering as part of the defense mechanism and develop a hierarchical aggregation that enhances our scheme's robustness in IID and non-IID scenarios. Extensive evaluations on two benchmark datasets demonstrate that APFed outperforms existing defense strategies while reducing the communication overhead by replacing the expensive remote communication method with inexpensive intra-cluster communication.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
Sosoxu发布了新的文献求助10
2秒前
Jasper应助win采纳,获得10
3秒前
3秒前
4秒前
NexusExplorer应助硕心采纳,获得10
6秒前
zhizhi完成签到,获得积分10
6秒前
yy完成签到,获得积分10
7秒前
wisdom应助顺利的荔枝采纳,获得10
8秒前
糊糊完成签到 ,获得积分10
8秒前
9秒前
炫哥IRIS完成签到,获得积分10
11秒前
11秒前
完美世界应助英俊秋白采纳,获得10
12秒前
彭于晏应助草莓熊采纳,获得10
14秒前
14秒前
童童完成签到,获得积分20
16秒前
16秒前
16秒前
bobo发布了新的文献求助100
17秒前
祖国统一发布了新的文献求助10
18秒前
18秒前
22秒前
万能图书馆应助WD采纳,获得10
22秒前
Index完成签到,获得积分10
23秒前
SciGPT应助方方方方方采纳,获得10
23秒前
sansronds完成签到,获得积分10
25秒前
汉堡包应助SOESAN采纳,获得10
25秒前
Jemry完成签到,获得积分10
26秒前
26秒前
26秒前
桐桐应助pinklay采纳,获得10
28秒前
dou发布了新的文献求助10
29秒前
小马甲应助sansronds采纳,获得10
31秒前
情怀应助xxxllllll采纳,获得10
31秒前
科西西发布了新的文献求助10
32秒前
33秒前
英姑应助yyy采纳,获得10
34秒前
共享精神应助墨酒采纳,获得10
34秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979719
求助须知:如何正确求助?哪些是违规求助? 3523760
关于积分的说明 11218505
捐赠科研通 3261224
什么是DOI,文献DOI怎么找? 1800507
邀请新用户注册赠送积分活动 879117
科研通“疑难数据库(出版商)”最低求助积分说明 807182