APFed: Anti-Poisoning Attacks in Privacy-Preserving Heterogeneous Federated Learning

计算机科学 利用 稳健性(进化) 聚类分析 联合学习 对手 分布式计算 计算机安全 信息隐私 水准点(测量) 计算机网络 数据挖掘 人工智能 生物化学 基因 大地测量学 化学 地理
作者
Xiao Chen,Haining Yu,Xiaohua Jia,Xiangzhan Yu
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:18: 5749-5761 被引量:3
标识
DOI:10.1109/tifs.2023.3315125
摘要

Federated learning (FL) is an emerging paradigm of privacy-preserving distributed machine learning that effectively deals with the privacy leakage problem by utilizing cryptographic primitives. However, how to prevent poisoning attacks in distributed situations has recently become a major FL concern. Indeed, an adversary can manipulate multiple edge nodes and submit malicious gradients to disturb the global model's availability. Currently, most existing works rely on an Independently Identical Distribution (IID) situation and identify malicious gradients using plaintext. However, we demonstrates that current works cannot handle the data heterogeneity scenario challenges and that publishing unencrypted gradients imposes significant privacy leakage problems. Therefore, we develop APFed, a layered privacy-preserving defense mechanism that significantly mitigates the effects of poisoning attacks in data heterogeneity scenarios. Specifically, we exploit HE as the underlying technique and employ the median coordinate as the benchmark. Subsequently, we propose a secure cosine similarity scheme to identify poisonous gradients, and we innovatively use clustering as part of the defense mechanism and develop a hierarchical aggregation that enhances our scheme's robustness in IID and non-IID scenarios. Extensive evaluations on two benchmark datasets demonstrate that APFed outperforms existing defense strategies while reducing the communication overhead by replacing the expensive remote communication method with inexpensive intra-cluster communication.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
c程序语言发布了新的文献求助10
1秒前
Haibrar完成签到 ,获得积分10
1秒前
幻月完成签到,获得积分10
1秒前
英姑应助hao123采纳,获得10
3秒前
6秒前
6秒前
7秒前
圈圈圆了发布了新的文献求助10
10秒前
10秒前
13秒前
wfx发布了新的文献求助10
14秒前
Don驳回了脑洞疼应助
16秒前
大个应助hihi采纳,获得10
17秒前
18秒前
20秒前
曹喳喳发布了新的文献求助10
21秒前
22秒前
希望天下0贩的0应助mi采纳,获得30
23秒前
Ryuki完成签到,获得积分10
25秒前
25秒前
26秒前
26秒前
27秒前
27秒前
Lwj发布了新的文献求助10
31秒前
31秒前
planto发布了新的文献求助10
31秒前
调皮的海之完成签到,获得积分10
31秒前
nuonuomimi发布了新的文献求助10
32秒前
科研通AI5应助STAUDINGER采纳,获得10
32秒前
sandyleung发布了新的文献求助10
32秒前
33秒前
打打应助我是谁采纳,获得10
33秒前
34秒前
34秒前
Akim应助科研小民工采纳,获得10
35秒前
36秒前
ASBL发布了新的文献求助10
38秒前
英姑应助sandyleung采纳,获得10
38秒前
打打应助快乐的冰巧采纳,获得10
38秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735903
求助须知:如何正确求助?哪些是违规求助? 3279592
关于积分的说明 10016324
捐赠科研通 2996292
什么是DOI,文献DOI怎么找? 1644012
邀请新用户注册赠送积分活动 781709
科研通“疑难数据库(出版商)”最低求助积分说明 749425