APFed: Anti-Poisoning Attacks in Privacy-Preserving Heterogeneous Federated Learning

计算机科学 利用 稳健性(进化) 聚类分析 联合学习 对手 分布式计算 计算机安全 信息隐私 水准点(测量) 计算机网络 数据挖掘 人工智能 生物化学 基因 大地测量学 化学 地理
作者
Xiao Chen,Haining Yu,Xiaohua Jia,Xiangzhan Yu
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:18: 5749-5761 被引量:3
标识
DOI:10.1109/tifs.2023.3315125
摘要

Federated learning (FL) is an emerging paradigm of privacy-preserving distributed machine learning that effectively deals with the privacy leakage problem by utilizing cryptographic primitives. However, how to prevent poisoning attacks in distributed situations has recently become a major FL concern. Indeed, an adversary can manipulate multiple edge nodes and submit malicious gradients to disturb the global model's availability. Currently, most existing works rely on an Independently Identical Distribution (IID) situation and identify malicious gradients using plaintext. However, we demonstrates that current works cannot handle the data heterogeneity scenario challenges and that publishing unencrypted gradients imposes significant privacy leakage problems. Therefore, we develop APFed, a layered privacy-preserving defense mechanism that significantly mitigates the effects of poisoning attacks in data heterogeneity scenarios. Specifically, we exploit HE as the underlying technique and employ the median coordinate as the benchmark. Subsequently, we propose a secure cosine similarity scheme to identify poisonous gradients, and we innovatively use clustering as part of the defense mechanism and develop a hierarchical aggregation that enhances our scheme's robustness in IID and non-IID scenarios. Extensive evaluations on two benchmark datasets demonstrate that APFed outperforms existing defense strategies while reducing the communication overhead by replacing the expensive remote communication method with inexpensive intra-cluster communication.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
1秒前
善学以致用应助hyjhhy采纳,获得10
2秒前
Waksman发布了新的文献求助10
2秒前
3秒前
3秒前
鲍幻悲发布了新的文献求助10
4秒前
桃桃完成签到,获得积分20
4秒前
Shine发布了新的文献求助10
5秒前
5秒前
Mytheye完成签到,获得积分10
5秒前
素素发布了新的文献求助10
6秒前
wanci应助顺心绮兰采纳,获得10
6秒前
清零发布了新的文献求助10
7秒前
大个应助罗布泊孤独海鸟采纳,获得10
8秒前
拉长的铅笔完成签到,获得积分10
8秒前
Lenard Guma完成签到 ,获得积分10
8秒前
IVAN发布了新的文献求助10
9秒前
xxfyaojiayou发布了新的文献求助10
9秒前
9秒前
10秒前
学习吧发布了新的文献求助10
10秒前
leyna完成签到,获得积分10
11秒前
shinysparrow应助史迪仔采纳,获得200
11秒前
12秒前
大个应助...采纳,获得10
12秒前
12秒前
13秒前
14秒前
14秒前
14秒前
14秒前
陈最发布了新的文献求助10
14秒前
15秒前
xinlong完成签到,获得积分10
15秒前
15秒前
15秒前
quhayley应助zmy采纳,获得10
16秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148993
求助须知:如何正确求助?哪些是违规求助? 2800076
关于积分的说明 7838336
捐赠科研通 2457543
什么是DOI,文献DOI怎么找? 1307913
科研通“疑难数据库(出版商)”最低求助积分说明 628328
版权声明 601685