Attention mechanism-guided residual convolution variational autoencoder for bearing fault diagnosis under noisy environments

自编码 残余物 计算机科学 规范化(社会学) 人工智能 稳健性(进化) 深度学习 卷积(计算机科学) 方位(导航) 模式识别(心理学) 算法 人工神经网络 生物化学 化学 社会学 人类学 基因
作者
Xiaoan Yan,Yanyu Lü,Ying Liu,Minping Jia
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (12): 125046-125046 被引量:11
标识
DOI:10.1088/1361-6501/acf8e6
摘要

Abstract Due to rolling bearings usually operate under fluctuating working conditions in practical engineering, the raw vibration signals generated by bearing faults have nonlinear and non-stationary characteristics. Additionally, there is a lot of noise interference in the collected bearing vibration signal, which indicates that it is difficult to extract bearing fault information and obtain a satisfactory diagnosis accuracy via using traditional method. Deep learning provides a shining road to address this issue. Nevertheless, traditional deep network model has the shortcomings of poor generalization performance and weak robustness in the feature learning. To improve fault recognition accuracy and obtain a favorable anti-noise robustness, this paper proposes a novel bearing fault diagnosis approach based on attention mechanism-guided residual convolutional variational autoencoder (AM-RCVAE). Firstly, the improved residual module is constructed to overcome the convergence difficulty problem caused by network degradation and promote the model generalization performance by replacing the batch normalization (BN) layer in the traditional residual module with the adaptive BN layer. Subsequently, by incorporating the convolutional block attention module and the improved residual module into convolutional variational autoencoder, a deep network model termed as AM-RCVAE is presented to automatically learn fault features from the original data and perform fault diagnosis tasks. The effectiveness of the proposed approach is verified via two experimental cases. Moreover, the recognition accuracy and diagnostic performance of the proposed approach have been certain improved compared with several representative methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
薛小飞飞完成签到 ,获得积分10
刚刚
linliqing完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
1秒前
集力申完成签到,获得积分10
2秒前
fr0zen发布了新的文献求助10
2秒前
2秒前
ddddd完成签到,获得积分10
2秒前
2秒前
灰灰发布了新的文献求助10
2秒前
RasmusLin发布了新的文献求助20
3秒前
3秒前
周周发布了新的文献求助10
3秒前
kingwill举报hhh求助涉嫌违规
3秒前
3秒前
3秒前
Elaine完成签到,获得积分10
4秒前
今后应助许鸽采纳,获得10
4秒前
4秒前
Ava应助池鱼思故渊采纳,获得10
5秒前
梁33完成签到,获得积分10
5秒前
乐乐应助池鱼思故渊采纳,获得10
5秒前
斯文败类应助33采纳,获得10
5秒前
fff发布了新的文献求助10
5秒前
Akim应助杨帅采纳,获得10
5秒前
ZeKaWa完成签到,获得积分0
5秒前
小橘子发布了新的文献求助10
6秒前
HEYATIAN完成签到 ,获得积分10
6秒前
豌豆苗完成签到 ,获得积分10
7秒前
帅气的小兔子完成签到,获得积分10
7秒前
7秒前
Double发布了新的文献求助10
8秒前
CGDAZE完成签到,获得积分10
8秒前
Raymond应助快乐小子采纳,获得10
8秒前
汉堡包应助ddddd采纳,获得10
8秒前
港怀发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
9秒前
冷傲的慕梅完成签到,获得积分20
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5574157
求助须知:如何正确求助?哪些是违规求助? 4660338
关于积分的说明 14729696
捐赠科研通 4600255
什么是DOI,文献DOI怎么找? 2524742
邀请新用户注册赠送积分活动 1495053
关于科研通互助平台的介绍 1465034