Attention mechanism-guided residual convolution variational autoencoder for bearing fault diagnosis under noisy environments

自编码 残余物 计算机科学 规范化(社会学) 人工智能 稳健性(进化) 深度学习 卷积(计算机科学) 方位(导航) 模式识别(心理学) 算法 人工神经网络 生物化学 化学 社会学 人类学 基因
作者
Xiaoan Yan,Yanyu Lü,Ying Liu,Minping Jia
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (12): 125046-125046 被引量:11
标识
DOI:10.1088/1361-6501/acf8e6
摘要

Abstract Due to rolling bearings usually operate under fluctuating working conditions in practical engineering, the raw vibration signals generated by bearing faults have nonlinear and non-stationary characteristics. Additionally, there is a lot of noise interference in the collected bearing vibration signal, which indicates that it is difficult to extract bearing fault information and obtain a satisfactory diagnosis accuracy via using traditional method. Deep learning provides a shining road to address this issue. Nevertheless, traditional deep network model has the shortcomings of poor generalization performance and weak robustness in the feature learning. To improve fault recognition accuracy and obtain a favorable anti-noise robustness, this paper proposes a novel bearing fault diagnosis approach based on attention mechanism-guided residual convolutional variational autoencoder (AM-RCVAE). Firstly, the improved residual module is constructed to overcome the convergence difficulty problem caused by network degradation and promote the model generalization performance by replacing the batch normalization (BN) layer in the traditional residual module with the adaptive BN layer. Subsequently, by incorporating the convolutional block attention module and the improved residual module into convolutional variational autoencoder, a deep network model termed as AM-RCVAE is presented to automatically learn fault features from the original data and perform fault diagnosis tasks. The effectiveness of the proposed approach is verified via two experimental cases. Moreover, the recognition accuracy and diagnostic performance of the proposed approach have been certain improved compared with several representative methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
又又完成签到,获得积分10
1秒前
泡泡茶壶o完成签到 ,获得积分10
3秒前
笨笨忘幽完成签到,获得积分0
7秒前
Angenstern完成签到 ,获得积分10
10秒前
CLTTT完成签到,获得积分0
14秒前
LiangRen完成签到 ,获得积分10
18秒前
JJJ完成签到,获得积分10
29秒前
哥哥完成签到,获得积分10
39秒前
dllnf发布了新的文献求助10
42秒前
啦啦啦完成签到 ,获得积分20
51秒前
娟娟完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
hdhuang完成签到,获得积分10
1分钟前
tcheng发布了新的文献求助10
1分钟前
dllnf完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
tcheng完成签到,获得积分10
1分钟前
佳言2009完成签到 ,获得积分10
1分钟前
一天完成签到 ,获得积分10
1分钟前
忧虑的静柏完成签到 ,获得积分10
1分钟前
啊哒吸哇完成签到,获得积分10
2分钟前
2分钟前
Sunny完成签到,获得积分10
2分钟前
2分钟前
EVEN完成签到 ,获得积分0
2分钟前
木头人发布了新的文献求助20
2分钟前
三杯吐然诺完成签到 ,获得积分10
2分钟前
shacodow完成签到,获得积分10
2分钟前
小学徒完成签到 ,获得积分10
3分钟前
不劳而获完成签到 ,获得积分10
3分钟前
jiunuan完成签到,获得积分10
3分钟前
WL完成签到 ,获得积分10
3分钟前
ll完成签到,获得积分10
3分钟前
瞿人雄完成签到,获得积分10
3分钟前
没心没肺完成签到,获得积分10
3分钟前
1002SHIB完成签到,获得积分10
3分钟前
nihaolaojiu完成签到,获得积分10
3分钟前
sheetung完成签到,获得积分10
3分钟前
共享精神应助科研通管家采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5539095
求助须知:如何正确求助?哪些是违规求助? 4625935
关于积分的说明 14597077
捐赠科研通 4566735
什么是DOI,文献DOI怎么找? 2503520
邀请新用户注册赠送积分活动 1481524
关于科研通互助平台的介绍 1453020