亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Attention mechanism-guided residual convolution variational autoencoder for bearing fault diagnosis under noisy environments

自编码 残余物 计算机科学 规范化(社会学) 人工智能 稳健性(进化) 深度学习 卷积(计算机科学) 方位(导航) 模式识别(心理学) 算法 人工神经网络 生物化学 化学 社会学 人类学 基因
作者
Xiaoan Yan,Yanyu Lü,Ying Liu,Minping Jia
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (12): 125046-125046 被引量:2
标识
DOI:10.1088/1361-6501/acf8e6
摘要

Abstract Due to rolling bearings usually operate under fluctuating working conditions in practical engineering, the raw vibration signals generated by bearing faults have nonlinear and non-stationary characteristics. Additionally, there is a lot of noise interference in the collected bearing vibration signal, which indicates that it is difficult to extract bearing fault information and obtain a satisfactory diagnosis accuracy via using traditional method. Deep learning provides a shining road to address this issue. Nevertheless, traditional deep network model has the shortcomings of poor generalization performance and weak robustness in the feature learning. To improve fault recognition accuracy and obtain a favorable anti-noise robustness, this paper proposes a novel bearing fault diagnosis approach based on attention mechanism-guided residual convolutional variational autoencoder (AM-RCVAE). Firstly, the improved residual module is constructed to overcome the convergence difficulty problem caused by network degradation and promote the model generalization performance by replacing the batch normalization (BN) layer in the traditional residual module with the adaptive BN layer. Subsequently, by incorporating the convolutional block attention module and the improved residual module into convolutional variational autoencoder, a deep network model termed as AM-RCVAE is presented to automatically learn fault features from the original data and perform fault diagnosis tasks. The effectiveness of the proposed approach is verified via two experimental cases. Moreover, the recognition accuracy and diagnostic performance of the proposed approach have been certain improved compared with several representative methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
活力竺发布了新的文献求助10
10秒前
等待冷风完成签到,获得积分10
15秒前
Joeswith完成签到,获得积分10
23秒前
华仔应助活力竺采纳,获得10
1分钟前
1分钟前
岩新完成签到 ,获得积分10
1分钟前
iorpi完成签到,获得积分10
1分钟前
2分钟前
jfc完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
yoyo完成签到,获得积分10
3分钟前
小天使海蒂完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
活力竺发布了新的文献求助10
4分钟前
1122345完成签到,获得积分20
4分钟前
Jarvis Lin完成签到,获得积分10
4分钟前
4分钟前
葱饼完成签到 ,获得积分10
4分钟前
魔幻的妖丽完成签到 ,获得积分10
4分钟前
5分钟前
5分钟前
5分钟前
慕青应助活力竺采纳,获得10
5分钟前
5分钟前
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
6分钟前
6分钟前
6分钟前
6分钟前
6分钟前
6分钟前
要开心完成签到,获得积分10
6分钟前
要开心发布了新的文献求助10
6分钟前
斯文败类应助要开心采纳,获得10
6分钟前
xiemeili完成签到 ,获得积分10
7分钟前
7分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311164
求助须知:如何正确求助?哪些是违规求助? 2943906
关于积分的说明 8516715
捐赠科研通 2619275
什么是DOI,文献DOI怎么找? 1432193
科研通“疑难数据库(出版商)”最低求助积分说明 664520
邀请新用户注册赠送积分活动 649810