Attention mechanism-guided residual convolution variational autoencoder for bearing fault diagnosis under noisy environments

自编码 残余物 计算机科学 规范化(社会学) 人工智能 稳健性(进化) 深度学习 卷积(计算机科学) 方位(导航) 模式识别(心理学) 算法 人工神经网络 生物化学 化学 社会学 人类学 基因
作者
Xiaoan Yan,Yanyu Lü,Ying Liu,Minping Jia
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (12): 125046-125046 被引量:11
标识
DOI:10.1088/1361-6501/acf8e6
摘要

Abstract Due to rolling bearings usually operate under fluctuating working conditions in practical engineering, the raw vibration signals generated by bearing faults have nonlinear and non-stationary characteristics. Additionally, there is a lot of noise interference in the collected bearing vibration signal, which indicates that it is difficult to extract bearing fault information and obtain a satisfactory diagnosis accuracy via using traditional method. Deep learning provides a shining road to address this issue. Nevertheless, traditional deep network model has the shortcomings of poor generalization performance and weak robustness in the feature learning. To improve fault recognition accuracy and obtain a favorable anti-noise robustness, this paper proposes a novel bearing fault diagnosis approach based on attention mechanism-guided residual convolutional variational autoencoder (AM-RCVAE). Firstly, the improved residual module is constructed to overcome the convergence difficulty problem caused by network degradation and promote the model generalization performance by replacing the batch normalization (BN) layer in the traditional residual module with the adaptive BN layer. Subsequently, by incorporating the convolutional block attention module and the improved residual module into convolutional variational autoencoder, a deep network model termed as AM-RCVAE is presented to automatically learn fault features from the original data and perform fault diagnosis tasks. The effectiveness of the proposed approach is verified via two experimental cases. Moreover, the recognition accuracy and diagnostic performance of the proposed approach have been certain improved compared with several representative methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_850aeZ完成签到,获得积分0
1秒前
wan12138完成签到,获得积分10
1秒前
2秒前
张中山发布了新的文献求助10
2秒前
南风歌初发布了新的文献求助10
2秒前
adamchris应助AlexLXJ采纳,获得10
3秒前
华仔应助LX采纳,获得10
4秒前
小二郎应助xm采纳,获得10
4秒前
4秒前
5秒前
NexusExplorer应助玖玖采纳,获得10
5秒前
保奔完成签到,获得积分10
5秒前
7秒前
7秒前
等待发布了新的文献求助10
8秒前
祖佳完成签到,获得积分10
8秒前
wan12138发布了新的文献求助10
9秒前
小二郎应助lucky采纳,获得10
9秒前
CCsouljump完成签到 ,获得积分10
9秒前
梦想飞翔发布了新的文献求助10
10秒前
11秒前
linzedd发布了新的文献求助10
11秒前
kaede完成签到,获得积分10
12秒前
我是老大应助杰杰大叔采纳,获得10
12秒前
13秒前
丘比特应助迷路的幼南采纳,获得10
13秒前
lzn完成签到,获得积分20
14秒前
15秒前
16秒前
科目三应助爱笑的天空采纳,获得10
16秒前
16秒前
xuexuexixi123完成签到 ,获得积分10
16秒前
18秒前
平淡的冰巧完成签到,获得积分10
18秒前
18秒前
浮游应助志不在科研采纳,获得10
19秒前
two发布了新的文献求助10
20秒前
懒洋洋完成签到 ,获得积分10
21秒前
JL发布了新的文献求助10
21秒前
Eddy完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300590
求助须知:如何正确求助?哪些是违规求助? 4448410
关于积分的说明 13845816
捐赠科研通 4334134
什么是DOI,文献DOI怎么找? 2379350
邀请新用户注册赠送积分活动 1374494
关于科研通互助平台的介绍 1340160