已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Attention mechanism-guided residual convolution variational autoencoder for bearing fault diagnosis under noisy environments

自编码 残余物 计算机科学 规范化(社会学) 人工智能 稳健性(进化) 深度学习 卷积(计算机科学) 方位(导航) 模式识别(心理学) 算法 人工神经网络 生物化学 化学 社会学 人类学 基因
作者
Xiaoan Yan,Yanyu Lü,Ying Liu,Minping Jia
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (12): 125046-125046 被引量:11
标识
DOI:10.1088/1361-6501/acf8e6
摘要

Abstract Due to rolling bearings usually operate under fluctuating working conditions in practical engineering, the raw vibration signals generated by bearing faults have nonlinear and non-stationary characteristics. Additionally, there is a lot of noise interference in the collected bearing vibration signal, which indicates that it is difficult to extract bearing fault information and obtain a satisfactory diagnosis accuracy via using traditional method. Deep learning provides a shining road to address this issue. Nevertheless, traditional deep network model has the shortcomings of poor generalization performance and weak robustness in the feature learning. To improve fault recognition accuracy and obtain a favorable anti-noise robustness, this paper proposes a novel bearing fault diagnosis approach based on attention mechanism-guided residual convolutional variational autoencoder (AM-RCVAE). Firstly, the improved residual module is constructed to overcome the convergence difficulty problem caused by network degradation and promote the model generalization performance by replacing the batch normalization (BN) layer in the traditional residual module with the adaptive BN layer. Subsequently, by incorporating the convolutional block attention module and the improved residual module into convolutional variational autoencoder, a deep network model termed as AM-RCVAE is presented to automatically learn fault features from the original data and perform fault diagnosis tasks. The effectiveness of the proposed approach is verified via two experimental cases. Moreover, the recognition accuracy and diagnostic performance of the proposed approach have been certain improved compared with several representative methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
韩保晨发布了新的文献求助10
2秒前
hhhi发布了新的文献求助10
2秒前
2秒前
CYL07完成签到 ,获得积分10
5秒前
赵心宇发布了新的文献求助10
6秒前
8秒前
8秒前
野子发布了新的文献求助10
12秒前
kk发布了新的文献求助10
13秒前
zzy发布了新的文献求助10
16秒前
强健的迎波完成签到,获得积分10
16秒前
幸运小怪兽完成签到,获得积分10
17秒前
mmy完成签到 ,获得积分10
18秒前
ding应助野子采纳,获得10
20秒前
20秒前
mmy关注了科研通微信公众号
22秒前
zhy完成签到,获得积分10
22秒前
JamesPei应助科研通管家采纳,获得10
23秒前
coolkid应助科研通管家采纳,获得10
23秒前
脑洞疼应助科研通管家采纳,获得10
23秒前
FashionBoy应助科研通管家采纳,获得10
23秒前
23秒前
23秒前
佳啊发布了新的文献求助10
25秒前
luo发布了新的文献求助10
28秒前
28秒前
28秒前
29秒前
29秒前
夏天无完成签到 ,获得积分10
31秒前
zhengxu发布了新的文献求助30
31秒前
随遇而安完成签到 ,获得积分10
32秒前
JRRskynet发布了新的文献求助10
32秒前
tianzhanggong发布了新的文献求助30
33秒前
33秒前
33秒前
33秒前
许愿完成签到 ,获得积分10
35秒前
36秒前
夭夭发布了新的文献求助10
36秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994469
求助须知:如何正确求助?哪些是违规求助? 3534869
关于积分的说明 11266676
捐赠科研通 3274686
什么是DOI,文献DOI怎么找? 1806453
邀请新用户注册赠送积分活动 883298
科研通“疑难数据库(出版商)”最低求助积分说明 809749