Attention mechanism-guided residual convolution variational autoencoder for bearing fault diagnosis under noisy environments

自编码 残余物 计算机科学 规范化(社会学) 人工智能 稳健性(进化) 深度学习 卷积(计算机科学) 方位(导航) 模式识别(心理学) 算法 人工神经网络 生物化学 化学 社会学 人类学 基因
作者
Xiaoan Yan,Yanyu Lü,Ying Liu,Minping Jia
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (12): 125046-125046 被引量:11
标识
DOI:10.1088/1361-6501/acf8e6
摘要

Abstract Due to rolling bearings usually operate under fluctuating working conditions in practical engineering, the raw vibration signals generated by bearing faults have nonlinear and non-stationary characteristics. Additionally, there is a lot of noise interference in the collected bearing vibration signal, which indicates that it is difficult to extract bearing fault information and obtain a satisfactory diagnosis accuracy via using traditional method. Deep learning provides a shining road to address this issue. Nevertheless, traditional deep network model has the shortcomings of poor generalization performance and weak robustness in the feature learning. To improve fault recognition accuracy and obtain a favorable anti-noise robustness, this paper proposes a novel bearing fault diagnosis approach based on attention mechanism-guided residual convolutional variational autoencoder (AM-RCVAE). Firstly, the improved residual module is constructed to overcome the convergence difficulty problem caused by network degradation and promote the model generalization performance by replacing the batch normalization (BN) layer in the traditional residual module with the adaptive BN layer. Subsequently, by incorporating the convolutional block attention module and the improved residual module into convolutional variational autoencoder, a deep network model termed as AM-RCVAE is presented to automatically learn fault features from the original data and perform fault diagnosis tasks. The effectiveness of the proposed approach is verified via two experimental cases. Moreover, the recognition accuracy and diagnostic performance of the proposed approach have been certain improved compared with several representative methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cruise发布了新的文献求助10
1秒前
sean发布了新的文献求助10
1秒前
负责月光完成签到,获得积分10
1秒前
欧大大完成签到,获得积分10
1秒前
2秒前
2秒前
粥粥发布了新的文献求助10
3秒前
落基山脉脆皮玄米茶完成签到,获得积分10
3秒前
无情的说完成签到,获得积分10
3秒前
太阳完成签到,获得积分10
4秒前
sff发布了新的文献求助10
4秒前
blue发布了新的文献求助10
5秒前
西西西完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
华仔应助杨震采纳,获得10
6秒前
6秒前
lwt完成签到,获得积分10
7秒前
太阳发布了新的文献求助20
8秒前
8秒前
努力科研的博士僧完成签到,获得积分10
8秒前
威武千青发布了新的文献求助10
9秒前
梅狸猫发布了新的文献求助10
9秒前
生动梦松发布了新的文献求助200
9秒前
10秒前
叶子完成签到,获得积分10
10秒前
11秒前
浦肯野完成签到,获得积分10
11秒前
任妮发布了新的文献求助10
12秒前
折柳完成签到 ,获得积分10
12秒前
sean完成签到,获得积分20
13秒前
完美世界应助张一卓采纳,获得10
13秒前
畅快白凝发布了新的文献求助10
15秒前
15秒前
HH发布了新的文献求助10
15秒前
15秒前
细胞发布了新的文献求助10
16秒前
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4547012
求助须知:如何正确求助?哪些是违规求助? 3978071
关于积分的说明 12318010
捐赠科研通 3646605
什么是DOI,文献DOI怎么找? 2008273
邀请新用户注册赠送积分活动 1043802
科研通“疑难数据库(出版商)”最低求助积分说明 932460