已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Radiomics and Machine Learning for prediction of two-year disease-specific mortality and KRAS mutation status in metastatic colorectal cancer

克拉斯 医学 结直肠癌 接收机工作特性 癌症 肿瘤科 疾病 内科学 阶段(地层学) 机器学习 队列 人工智能 放射科 计算机科学 生物 古生物学
作者
María Agustina Ricci Lara,M. Esposito,Martina Aineseder,Roy López Grove,M. Cerini,María Alicia Verzura,Daniel Luna,Sonia Benítez,Juan Carlos Spina
出处
期刊:Surgical Oncology-oxford [Elsevier]
卷期号:51: 101986-101986 被引量:3
标识
DOI:10.1016/j.suronc.2023.101986
摘要

Colorectal cancer is usually accompanied by liver metastases. The prediction of patient evolution is essential for the choice of the appropriate therapy. The aim of this study is to develop and evaluate machine learning models to predict KRAS gene mutations and 2-year disease-specific mortality from medical images.Clinical and follow-up information was collected from patients with metastatic colorectal cancer who had undergone computed tomography prior to liver resection. The dominant liver lesion was segmented in each scan and radiomic features were extracted from the volumes of interest. The 65% of the cases were employed to perform feature selection and to train machine learning algorithms through cross-validation. The best performing models were assembled and evaluated in the remaining cases of the cohort.For the mortality model development, 101 cases were used as training set (64 alive, 37 deceased) and 35 as test set (22 alive, 13 deceased); while for KRAS mutation models, 55 cases were used for training (31 wild-type, 24 mutated) and 30 for testing (17 wild-type, 13 mutated). The ensemble of top performing models resulted in an area under the receiver operating characteristic curve of 0.878 for mortality and 0.905 for KRAS prediction.Predicting the prognosis of patients with metastatic colorectal cancer is useful for making timely decisions about the best treatment options. This study presents a noninvasive method based on quantitative analysis of baseline images to identify factors influencing patient outcomes, with the aim of incorporating these tools as support systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夏紊完成签到 ,获得积分10
1秒前
2秒前
赘婿应助孤独靖柏采纳,获得10
2秒前
夏来应助耍酷的小海豚采纳,获得20
4秒前
QQ完成签到,获得积分10
4秒前
Mocca发布了新的文献求助10
6秒前
8秒前
NMZN发布了新的文献求助10
10秒前
科研通AI2S应助百里一一采纳,获得10
10秒前
12秒前
DH完成签到 ,获得积分10
12秒前
12秒前
向日葵完成签到,获得积分10
12秒前
Czerkingsky完成签到,获得积分10
13秒前
小二郎应助云澈采纳,获得10
13秒前
www发布了新的文献求助10
14秒前
14秒前
zq970发布了新的文献求助10
15秒前
15秒前
领导范儿应助KTaoL采纳,获得10
16秒前
健壮不斜完成签到 ,获得积分10
16秒前
孤独靖柏发布了新的文献求助10
17秒前
百里一一完成签到,获得积分10
19秒前
NexusExplorer应助xanderxue采纳,获得10
21秒前
我是老大应助科研通管家采纳,获得10
21秒前
CodeCraft应助科研通管家采纳,获得10
21秒前
Orange应助科研通管家采纳,获得10
21秒前
传奇3应助科研通管家采纳,获得10
22秒前
22秒前
22秒前
22秒前
雪雪发布了新的文献求助10
23秒前
云澈发布了新的文献求助10
26秒前
27秒前
29秒前
31秒前
科研通AI2S应助Zhouyue采纳,获得10
32秒前
34秒前
Ji完成签到,获得积分10
35秒前
吃星红豆完成签到,获得积分10
36秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129906
求助须知:如何正确求助?哪些是违规求助? 2780653
关于积分的说明 7749626
捐赠科研通 2435992
什么是DOI,文献DOI怎么找? 1294442
科研通“疑难数据库(出版商)”最低求助积分说明 623673
版权声明 600570