Radiomics and Machine Learning for prediction of two-year disease-specific mortality and KRAS mutation status in metastatic colorectal cancer

克拉斯 医学 结直肠癌 接收机工作特性 癌症 肿瘤科 疾病 内科学 阶段(地层学) 机器学习 队列 人工智能 放射科 计算机科学 生物 古生物学
作者
María Agustina Ricci Lara,M. Esposito,Martina Aineseder,Roy López Grove,M. Cerini,María Alicia Verzura,Daniel Luna,Sonia Benítez,Juan Carlos Spina
出处
期刊:Surgical Oncology-oxford [Elsevier BV]
卷期号:51: 101986-101986 被引量:4
标识
DOI:10.1016/j.suronc.2023.101986
摘要

Colorectal cancer is usually accompanied by liver metastases. The prediction of patient evolution is essential for the choice of the appropriate therapy. The aim of this study is to develop and evaluate machine learning models to predict KRAS gene mutations and 2-year disease-specific mortality from medical images.Clinical and follow-up information was collected from patients with metastatic colorectal cancer who had undergone computed tomography prior to liver resection. The dominant liver lesion was segmented in each scan and radiomic features were extracted from the volumes of interest. The 65% of the cases were employed to perform feature selection and to train machine learning algorithms through cross-validation. The best performing models were assembled and evaluated in the remaining cases of the cohort.For the mortality model development, 101 cases were used as training set (64 alive, 37 deceased) and 35 as test set (22 alive, 13 deceased); while for KRAS mutation models, 55 cases were used for training (31 wild-type, 24 mutated) and 30 for testing (17 wild-type, 13 mutated). The ensemble of top performing models resulted in an area under the receiver operating characteristic curve of 0.878 for mortality and 0.905 for KRAS prediction.Predicting the prognosis of patients with metastatic colorectal cancer is useful for making timely decisions about the best treatment options. This study presents a noninvasive method based on quantitative analysis of baseline images to identify factors influencing patient outcomes, with the aim of incorporating these tools as support systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Priseman完成签到 ,获得积分10
1秒前
晴光完成签到 ,获得积分10
2秒前
doubleshake完成签到,获得积分10
2秒前
3秒前
adam完成签到,获得积分10
7秒前
7秒前
乐乐应助科研通管家采纳,获得10
8秒前
8秒前
酷波er应助科研通管家采纳,获得30
8秒前
所所应助科研通管家采纳,获得10
8秒前
星辰大海应助科研通管家采纳,获得10
8秒前
9秒前
lilac应助科研通管家采纳,获得10
9秒前
小二郎应助科研通管家采纳,获得10
9秒前
lffann发布了新的文献求助10
9秒前
juliar完成签到 ,获得积分10
11秒前
lhappy发布了新的文献求助10
12秒前
机灵晓刚发布了新的文献求助10
13秒前
天天快乐应助由颖琪7yyq采纳,获得10
14秒前
所所应助yx采纳,获得10
15秒前
悲凉的溪流完成签到,获得积分10
17秒前
lhappy完成签到,获得积分10
18秒前
18秒前
moonlimb完成签到 ,获得积分10
18秒前
南鸢完成签到 ,获得积分10
20秒前
称心花生完成签到,获得积分20
22秒前
26秒前
ola完成签到,获得积分10
30秒前
cdercder应助yh采纳,获得30
30秒前
31秒前
31秒前
小王发布了新的社区帖子
31秒前
normankasimodo完成签到,获得积分10
31秒前
雀跃完成签到 ,获得积分10
33秒前
33秒前
www完成签到,获得积分10
35秒前
梧桐发布了新的文献求助10
36秒前
wzx发布了新的文献求助10
36秒前
shuangma完成签到,获得积分10
37秒前
顾矜应助ddd采纳,获得10
38秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737290
求助须知:如何正确求助?哪些是违规求助? 3281158
关于积分的说明 10023202
捐赠科研通 2997821
什么是DOI,文献DOI怎么找? 1644872
邀请新用户注册赠送积分活动 782227
科研通“疑难数据库(出版商)”最低求助积分说明 749731