Congener-specific uptake and accumulation of bisphenols in edible plants: Binding to prediction of bioaccumulation by attention mechanism multi-layer perceptron machine learning model

双酚A 化学 生物浓缩 生物累积 环境化学 双酚S 植物 生物 有机化学 环氧树脂
作者
Xindong Yang,Qinghua Zhou,Qianwen Wang,Juan Wu,Haofeng Zhu,Anping Zhang,Jianqiang Sun
出处
期刊:Environmental Pollution [Elsevier]
卷期号:337: 122552-122552 被引量:10
标识
DOI:10.1016/j.envpol.2023.122552
摘要

Plant accumulation of phenolic contaminants from agricultural soils can cause human health risks via the food chain. However, experimental and predictive information for plant uptake and accumulation of bisphenol congeners is lacking. In this study, the uptake, translocation, and accumulation of five bisphenols (BPs) in carrot and lettuce plants were investigated through hydroponic culture (duration of 168 h) and soil culture (duration of 42 days) systems. The results suggested a higher bioconcentration factor (BCF) of bisphenol AF (BPAF) in plants than that of the other four BPs. A positive correlation was found between the log BCF and the log Kow of BPs (R2carrot = 0.987, R2lettuce = 0.801, P < 0.05), while the log (translocation factor) exhibited a negative correlation with the log Kow (R2carrot = 0.957, R2lettuce = 0.960, P < 0.05). The results of molecular docking revealed that the lower binding energy of BPAF with glycosyltransferase, glutathione S-transferase, and cytochrome P450 (-4.34, -4.05, and -3.52 kcal/mol) would be responsible for its higher accumulation in plants. Based on the experimental data, an attention mechanism multi-layer perceptron (AM-MLP) model was developed to predict the BCF of eight untested BPs by machine learning, suggesting the relatively high BCF of bisphenol BP, bisphenol PH, and bisphenol TMC (BCFcarrot = 1.37, 1.50, 1.03; BCFlettuce = 1.02, 0.98, 0.67). The prediction of BCF for ever-increasing varieties of BPs by machine learning would reduce repetitive experimental tests and save resources, providing scientific guidance for the production and application of BPs from the perspective of priority pollutants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
上官若男应助谪旅客采纳,获得10
3秒前
zhouzheyu完成签到,获得积分10
3秒前
3秒前
3秒前
狂野若云发布了新的文献求助10
3秒前
4秒前
4秒前
5秒前
5秒前
田様应助KM采纳,获得10
5秒前
6秒前
小月亮完成签到,获得积分10
7秒前
华仔应助眯眯眼的板栗采纳,获得10
7秒前
8秒前
8秒前
8秒前
9秒前
桐桐应助zhangzhirong采纳,获得10
9秒前
蓝天发布了新的文献求助10
9秒前
9秒前
狂野若云完成签到,获得积分20
9秒前
9秒前
10秒前
LG发布了新的文献求助30
10秒前
温谷完成签到 ,获得积分10
10秒前
san发布了新的文献求助10
10秒前
11秒前
mistletoe完成签到,获得积分10
11秒前
王盼盼发布了新的文献求助10
11秒前
11秒前
11秒前
科研通AI6.1应助积极涵阳采纳,获得10
12秒前
befond完成签到,获得积分10
12秒前
13秒前
13秒前
zhangxinxin完成签到 ,获得积分10
13秒前
13秒前
13秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5743404
求助须知:如何正确求助?哪些是违规求助? 5413822
关于积分的说明 15347458
捐赠科研通 4884191
什么是DOI,文献DOI怎么找? 2625636
邀请新用户注册赠送积分活动 1574492
关于科研通互助平台的介绍 1531400