Congener-specific uptake and accumulation of bisphenols in edible plants: Binding to prediction of bioaccumulation by attention mechanism multi-layer perceptron machine learning model

双酚A 化学 生物浓缩 生物累积 环境化学 双酚S 植物 生物 有机化学 环氧树脂
作者
Xindong Yang,Qinghua Zhou,Qianwen Wang,Juan Wu,Haofeng Zhu,Anping Zhang,Jianqiang Sun
出处
期刊:Environmental Pollution [Elsevier]
卷期号:337: 122552-122552 被引量:10
标识
DOI:10.1016/j.envpol.2023.122552
摘要

Plant accumulation of phenolic contaminants from agricultural soils can cause human health risks via the food chain. However, experimental and predictive information for plant uptake and accumulation of bisphenol congeners is lacking. In this study, the uptake, translocation, and accumulation of five bisphenols (BPs) in carrot and lettuce plants were investigated through hydroponic culture (duration of 168 h) and soil culture (duration of 42 days) systems. The results suggested a higher bioconcentration factor (BCF) of bisphenol AF (BPAF) in plants than that of the other four BPs. A positive correlation was found between the log BCF and the log Kow of BPs (R2carrot = 0.987, R2lettuce = 0.801, P < 0.05), while the log (translocation factor) exhibited a negative correlation with the log Kow (R2carrot = 0.957, R2lettuce = 0.960, P < 0.05). The results of molecular docking revealed that the lower binding energy of BPAF with glycosyltransferase, glutathione S-transferase, and cytochrome P450 (-4.34, -4.05, and -3.52 kcal/mol) would be responsible for its higher accumulation in plants. Based on the experimental data, an attention mechanism multi-layer perceptron (AM-MLP) model was developed to predict the BCF of eight untested BPs by machine learning, suggesting the relatively high BCF of bisphenol BP, bisphenol PH, and bisphenol TMC (BCFcarrot = 1.37, 1.50, 1.03; BCFlettuce = 1.02, 0.98, 0.67). The prediction of BCF for ever-increasing varieties of BPs by machine learning would reduce repetitive experimental tests and save resources, providing scientific guidance for the production and application of BPs from the perspective of priority pollutants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
程风破浪完成签到,获得积分10
1秒前
搜集达人应助ZXC采纳,获得10
2秒前
无语的诗珊完成签到,获得积分10
4秒前
5秒前
5秒前
啦啦啦完成签到,获得积分10
6秒前
6秒前
8秒前
permanent完成签到,获得积分10
8秒前
活力沧海应助复杂的棒球采纳,获得10
9秒前
9秒前
谷云发布了新的文献求助10
10秒前
Kane完成签到,获得积分10
10秒前
33333发布了新的文献求助10
10秒前
针真滴完成签到 ,获得积分10
10秒前
11秒前
11秒前
xhsz1111发布了新的文献求助10
11秒前
Vipiggy完成签到,获得积分10
11秒前
ikun666完成签到,获得积分10
11秒前
舒心冷珍完成签到 ,获得积分10
11秒前
Henry完成签到,获得积分10
12秒前
jzt12138发布了新的文献求助10
14秒前
18秒前
唐艺尹发布了新的文献求助10
18秒前
上官若男应助鉴鸣盈采纳,获得10
18秒前
19秒前
20秒前
20秒前
灰色的乌完成签到,获得积分10
24秒前
量子星尘发布了新的文献求助10
24秒前
金金发布了新的文献求助10
25秒前
浩想碎觉发布了新的文献求助10
25秒前
26秒前
小草发布了新的文献求助10
27秒前
alan发布了新的文献求助10
29秒前
Jasper应助愉快的小土豆采纳,获得10
31秒前
滴滴答答发布了新的文献求助10
32秒前
天天发布了新的文献求助10
32秒前
量子星尘发布了新的文献求助10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684860
求助须知:如何正确求助?哪些是违规求助? 5039294
关于积分的说明 15185532
捐赠科研通 4843973
什么是DOI,文献DOI怎么找? 2597078
邀请新用户注册赠送积分活动 1549661
关于科研通互助平台的介绍 1508145