Congener-specific uptake and accumulation of bisphenols in edible plants: Binding to prediction of bioaccumulation by attention mechanism multi-layer perceptron machine learning model

双酚A 化学 生物浓缩 生物累积 环境化学 双酚S 植物 生物 有机化学 环氧树脂
作者
Xindong Yang,Qinghua Zhou,Qianwen Wang,Juan Wu,Haofeng Zhu,Anping Zhang,Jianqiang Sun
出处
期刊:Environmental Pollution [Elsevier]
卷期号:337: 122552-122552 被引量:10
标识
DOI:10.1016/j.envpol.2023.122552
摘要

Plant accumulation of phenolic contaminants from agricultural soils can cause human health risks via the food chain. However, experimental and predictive information for plant uptake and accumulation of bisphenol congeners is lacking. In this study, the uptake, translocation, and accumulation of five bisphenols (BPs) in carrot and lettuce plants were investigated through hydroponic culture (duration of 168 h) and soil culture (duration of 42 days) systems. The results suggested a higher bioconcentration factor (BCF) of bisphenol AF (BPAF) in plants than that of the other four BPs. A positive correlation was found between the log BCF and the log Kow of BPs (R2carrot = 0.987, R2lettuce = 0.801, P < 0.05), while the log (translocation factor) exhibited a negative correlation with the log Kow (R2carrot = 0.957, R2lettuce = 0.960, P < 0.05). The results of molecular docking revealed that the lower binding energy of BPAF with glycosyltransferase, glutathione S-transferase, and cytochrome P450 (-4.34, -4.05, and -3.52 kcal/mol) would be responsible for its higher accumulation in plants. Based on the experimental data, an attention mechanism multi-layer perceptron (AM-MLP) model was developed to predict the BCF of eight untested BPs by machine learning, suggesting the relatively high BCF of bisphenol BP, bisphenol PH, and bisphenol TMC (BCFcarrot = 1.37, 1.50, 1.03; BCFlettuce = 1.02, 0.98, 0.67). The prediction of BCF for ever-increasing varieties of BPs by machine learning would reduce repetitive experimental tests and save resources, providing scientific guidance for the production and application of BPs from the perspective of priority pollutants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坚强的元珊应助猪猪hero采纳,获得20
刚刚
luanzhaohui发布了新的文献求助50
1秒前
jia完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
向北发布了新的文献求助20
1秒前
kimchiyak给咯咯咯的求助进行了留言
2秒前
3秒前
3秒前
外向的初曼完成签到,获得积分10
3秒前
NexusExplorer应助wuran采纳,获得10
3秒前
复杂的梦易完成签到,获得积分10
4秒前
FashionBoy应助zhou采纳,获得10
4秒前
柳博超完成签到,获得积分10
5秒前
KHromance发布了新的文献求助10
6秒前
duoduo发布了新的文献求助20
6秒前
unicorn完成签到,获得积分10
6秒前
LLM完成签到,获得积分10
7秒前
ss发布了新的文献求助10
7秒前
跳跃完成签到,获得积分10
7秒前
jksg发布了新的文献求助10
8秒前
打打应助熙可檬采纳,获得10
9秒前
9秒前
传奇3应助pure采纳,获得10
10秒前
彩色的曼柔完成签到 ,获得积分10
10秒前
enen发布了新的文献求助10
10秒前
魔幻的翠容完成签到 ,获得积分10
10秒前
10秒前
11秒前
11秒前
坦率的香烟完成签到,获得积分10
12秒前
12秒前
funkii完成签到,获得积分10
13秒前
领导范儿应助向北采纳,获得10
13秒前
jiaxingwei发布了新的文献求助10
13秒前
LHL完成签到,获得积分20
13秒前
14秒前
123发布了新的文献求助10
14秒前
15秒前
西貝发布了新的文献求助10
15秒前
CodeCraft应助朴实的南露采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629957
求助须知:如何正确求助?哪些是违规求助? 4721200
关于积分的说明 14971845
捐赠科研通 4787915
什么是DOI,文献DOI怎么找? 2556638
邀请新用户注册赠送积分活动 1517713
关于科研通互助平台的介绍 1478320