Congener-specific uptake and accumulation of bisphenols in edible plants: Binding to prediction of bioaccumulation by attention mechanism multi-layer perceptron machine learning model

双酚A 化学 生物浓缩 生物累积 环境化学 双酚S 植物 生物 有机化学 环氧树脂
作者
Xindong Yang,Qinghua Zhou,Qianwen Wang,Juan Wu,Haofeng Zhu,Anping Zhang,Jianqiang Sun
出处
期刊:Environmental Pollution [Elsevier BV]
卷期号:337: 122552-122552
标识
DOI:10.1016/j.envpol.2023.122552
摘要

Plant accumulation of phenolic contaminants from agricultural soils can cause human health risks via the food chain. However, experimental and predictive information for plant uptake and accumulation of bisphenol congeners is lacking. In this study, the uptake, translocation, and accumulation of five bisphenols (BPs) in carrot and lettuce plants were investigated through hydroponic culture (duration of 168 h) and soil culture (duration of 42 days) systems. The results suggested a higher bioconcentration factor (BCF) of bisphenol AF (BPAF) in plants than that of the other four BPs. A positive correlation was found between the log BCF and the log Kow of BPs (R2carrot = 0.987, R2lettuce = 0.801, P < 0.05), while the log (translocation factor) exhibited a negative correlation with the log Kow (R2carrot = 0.957, R2lettuce = 0.960, P < 0.05). The results of molecular docking revealed that the lower binding energy of BPAF with glycosyltransferase, glutathione S-transferase, and cytochrome P450 (-4.34, -4.05, and -3.52 kcal/mol) would be responsible for its higher accumulation in plants. Based on the experimental data, an attention mechanism multi-layer perceptron (AM-MLP) model was developed to predict the BCF of eight untested BPs by machine learning, suggesting the relatively high BCF of bisphenol BP, bisphenol PH, and bisphenol TMC (BCFcarrot = 1.37, 1.50, 1.03; BCFlettuce = 1.02, 0.98, 0.67). The prediction of BCF for ever-increasing varieties of BPs by machine learning would reduce repetitive experimental tests and save resources, providing scientific guidance for the production and application of BPs from the perspective of priority pollutants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
妩媚的语蕊完成签到,获得积分10
刚刚
星移完成签到,获得积分10
1秒前
1秒前
五公里小战士完成签到,获得积分10
1秒前
1秒前
寒冷山雁完成签到,获得积分10
1秒前
包容的冷安完成签到,获得积分10
2秒前
Ava应助猪猪hero采纳,获得10
2秒前
李阳完成签到,获得积分10
2秒前
赖道之发布了新的文献求助10
3秒前
勤恳镜子完成签到,获得积分10
3秒前
Jasper应助晓湫采纳,获得20
3秒前
3秒前
4秒前
4秒前
4秒前
yzy完成签到,获得积分10
4秒前
念65发布了新的文献求助10
5秒前
Z1987完成签到,获得积分10
5秒前
孟一完成签到,获得积分10
5秒前
6秒前
钟志杰发布了新的文献求助10
7秒前
doctor杨发布了新的文献求助10
7秒前
8秒前
丁丽发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
谨慎枫叶发布了新的文献求助30
10秒前
谦让不二发布了新的文献求助10
10秒前
秋浱完成签到,获得积分10
10秒前
感动城发布了新的文献求助10
10秒前
可靠觅珍应助星移采纳,获得10
11秒前
小包包发布了新的文献求助50
11秒前
11秒前
念65完成签到,获得积分20
12秒前
JamesPei应助Crush采纳,获得10
12秒前
YoungLee完成签到,获得积分10
13秒前
英姑应助土豆大魔王采纳,获得10
13秒前
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960479
求助须知:如何正确求助?哪些是违规求助? 3506634
关于积分的说明 11131585
捐赠科研通 3238880
什么是DOI,文献DOI怎么找? 1789914
邀请新用户注册赠送积分活动 872039
科研通“疑难数据库(出版商)”最低求助积分说明 803124