Congener-specific uptake and accumulation of bisphenols in edible plants: Binding to prediction of bioaccumulation by attention mechanism multi-layer perceptron machine learning model

双酚A 化学 生物浓缩 生物累积 环境化学 双酚S 植物 生物 有机化学 环氧树脂
作者
Xindong Yang,Qinghua Zhou,Qianwen Wang,Juan Wu,Haofeng Zhu,Anping Zhang,Jianqiang Sun
出处
期刊:Environmental Pollution [Elsevier]
卷期号:337: 122552-122552 被引量:10
标识
DOI:10.1016/j.envpol.2023.122552
摘要

Plant accumulation of phenolic contaminants from agricultural soils can cause human health risks via the food chain. However, experimental and predictive information for plant uptake and accumulation of bisphenol congeners is lacking. In this study, the uptake, translocation, and accumulation of five bisphenols (BPs) in carrot and lettuce plants were investigated through hydroponic culture (duration of 168 h) and soil culture (duration of 42 days) systems. The results suggested a higher bioconcentration factor (BCF) of bisphenol AF (BPAF) in plants than that of the other four BPs. A positive correlation was found between the log BCF and the log Kow of BPs (R2carrot = 0.987, R2lettuce = 0.801, P < 0.05), while the log (translocation factor) exhibited a negative correlation with the log Kow (R2carrot = 0.957, R2lettuce = 0.960, P < 0.05). The results of molecular docking revealed that the lower binding energy of BPAF with glycosyltransferase, glutathione S-transferase, and cytochrome P450 (-4.34, -4.05, and -3.52 kcal/mol) would be responsible for its higher accumulation in plants. Based on the experimental data, an attention mechanism multi-layer perceptron (AM-MLP) model was developed to predict the BCF of eight untested BPs by machine learning, suggesting the relatively high BCF of bisphenol BP, bisphenol PH, and bisphenol TMC (BCFcarrot = 1.37, 1.50, 1.03; BCFlettuce = 1.02, 0.98, 0.67). The prediction of BCF for ever-increasing varieties of BPs by machine learning would reduce repetitive experimental tests and save resources, providing scientific guidance for the production and application of BPs from the perspective of priority pollutants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小何完成签到 ,获得积分10
1秒前
1秒前
1秒前
笨笨烨华完成签到 ,获得积分10
2秒前
2秒前
2秒前
lee完成签到,获得积分10
2秒前
明玖完成签到 ,获得积分10
4秒前
七七完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
鱼鱼发布了新的文献求助10
5秒前
季茂申完成签到 ,获得积分10
5秒前
zoe发布了新的文献求助10
6秒前
跳跃完成签到,获得积分10
6秒前
无极微光应助科研通管家采纳,获得20
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
LZC应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
kkk应助科研通管家采纳,获得10
7秒前
7秒前
小二郎应助科研通管家采纳,获得10
7秒前
程程完成签到,获得积分10
7秒前
7秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
kermitds完成签到 ,获得积分10
7秒前
明理纹应助科研通管家采纳,获得10
7秒前
7秒前
syhjxk完成签到,获得积分10
7秒前
GuoH完成签到,获得积分10
7秒前
zzzzz完成签到,获得积分10
8秒前
xiang完成签到,获得积分10
8秒前
8秒前
郑嘻嘻完成签到,获得积分10
8秒前
9秒前
微风正好完成签到 ,获得积分10
9秒前
9秒前
小美最棒完成签到,获得积分10
9秒前
mengwensi完成签到,获得积分10
9秒前
刻苦小丸子完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664846
求助须知:如何正确求助?哪些是违规求助? 4871596
关于积分的说明 15109131
捐赠科研通 4823659
什么是DOI,文献DOI怎么找? 2582486
邀请新用户注册赠送积分活动 1536484
关于科研通互助平台的介绍 1495036