Congener-specific uptake and accumulation of bisphenols in edible plants: Binding to prediction of bioaccumulation by attention mechanism multi-layer perceptron machine learning model

双酚A 化学 生物浓缩 生物累积 环境化学 双酚S 植物 生物 有机化学 环氧树脂
作者
Xindong Yang,Qinghua Zhou,Qianwen Wang,Juan Wu,Haofeng Zhu,Anping Zhang,Jianqiang Sun
出处
期刊:Environmental Pollution [Elsevier]
卷期号:337: 122552-122552 被引量:10
标识
DOI:10.1016/j.envpol.2023.122552
摘要

Plant accumulation of phenolic contaminants from agricultural soils can cause human health risks via the food chain. However, experimental and predictive information for plant uptake and accumulation of bisphenol congeners is lacking. In this study, the uptake, translocation, and accumulation of five bisphenols (BPs) in carrot and lettuce plants were investigated through hydroponic culture (duration of 168 h) and soil culture (duration of 42 days) systems. The results suggested a higher bioconcentration factor (BCF) of bisphenol AF (BPAF) in plants than that of the other four BPs. A positive correlation was found between the log BCF and the log Kow of BPs (R2carrot = 0.987, R2lettuce = 0.801, P < 0.05), while the log (translocation factor) exhibited a negative correlation with the log Kow (R2carrot = 0.957, R2lettuce = 0.960, P < 0.05). The results of molecular docking revealed that the lower binding energy of BPAF with glycosyltransferase, glutathione S-transferase, and cytochrome P450 (-4.34, -4.05, and -3.52 kcal/mol) would be responsible for its higher accumulation in plants. Based on the experimental data, an attention mechanism multi-layer perceptron (AM-MLP) model was developed to predict the BCF of eight untested BPs by machine learning, suggesting the relatively high BCF of bisphenol BP, bisphenol PH, and bisphenol TMC (BCFcarrot = 1.37, 1.50, 1.03; BCFlettuce = 1.02, 0.98, 0.67). The prediction of BCF for ever-increasing varieties of BPs by machine learning would reduce repetitive experimental tests and save resources, providing scientific guidance for the production and application of BPs from the perspective of priority pollutants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
monkey发布了新的文献求助50
刚刚
刚刚
顾矜应助小何采纳,获得10
刚刚
guaishou完成签到,获得积分10
刚刚
刚刚
1秒前
李健应助小白采纳,获得10
1秒前
冰冰发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
爆米花应助Windsea采纳,获得10
1秒前
3秒前
Z2H完成签到,获得积分10
3秒前
依旧完成签到 ,获得积分10
3秒前
3秒前
4秒前
taotie发布了新的文献求助10
5秒前
windflake完成签到,获得积分10
5秒前
5秒前
zmin完成签到,获得积分10
5秒前
魔幻大有发布了新的文献求助10
5秒前
6秒前
LQQ发布了新的文献求助10
6秒前
FashionBoy应助WH采纳,获得10
6秒前
7秒前
ma发布了新的文献求助10
7秒前
8秒前
老迟到的醉卉完成签到,获得积分10
8秒前
8秒前
欣喜十八给欣喜十八的求助进行了留言
8秒前
wanci应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
大个应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
脑洞疼应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
9秒前
大模型应助科研通管家采纳,获得10
9秒前
9秒前
Orange应助科研通管家采纳,获得30
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608292
求助须知:如何正确求助?哪些是违规求助? 4692876
关于积分的说明 14875899
捐赠科研通 4717214
什么是DOI,文献DOI怎么找? 2544162
邀请新用户注册赠送积分活动 1509147
关于科研通互助平台的介绍 1472809