Modeling Indirect Greenhouse Gas Emissions Sources from Urban Wastewater Treatment Plants: Integrating Machine Learning Models to Compensate for Sparse Parameters with Abundant Observations

温室气体 环境科学 梯度升压 废水 污水处理 缺氧水域 环境工程 生化工程 计算机科学 工程类 生态学 化学 机器学习 环境化学 生物 电气工程 随机森林
作者
Yujun Huang,Yifan Xie,Yipeng Wu,Fanlin Meng,Chengyu He,Hao Zhang,Xiaoting Wang,Ailun Shui,Shuming Liu
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:57 (48): 19860-19870
标识
DOI:10.1021/acs.est.3c06482
摘要

Electricity consumption and sludge yield (SY) are important indirect greenhouse gas (GHG) emission sources in wastewater treatment plants (WWTPs). Predicting these byproducts is crucial for tailoring technology-related policy decisions. However, it challenges balancing mass balance models and mechanistic models that respectively have limited intervariable nexus representation and excessive requirements on operational parameters. Herein, we propose integrating two machine learning models, namely, gradient boosting tree (GBT) and deep learning (DL), to precisely pointwise model electricity consumption intensity (ECI) and SY for WWTPs in China. Results indicate that GBT and DL are capable of mining massive data to compensate for the lack of available parameters, providing a comprehensive modeling focusing on operation conditions and designed parameters, respectively. The proposed model reveals that lower ECI and SY were associated with higher treated wastewater volumes, more lenient effluent standards, and newer equipment. Moreover, ECI and SY showed different patterns when influent biochemical oxygen demand is above or below 100 mg/L in the anaerobic-anoxic-oxic process. Therefore, managing ECI and SY requires quantifying the coupling relationships between biochemical reactions instead of isolating each variable. Furthermore, the proposed models demonstrate potential economic-related inequalities resulting from synergizing water pollution and GHG emissions management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
学习通完成签到,获得积分10
刚刚
1秒前
爆米花应助科研通管家采纳,获得10
3秒前
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
婷婷发布了新的文献求助10
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
天天快乐应助科研通管家采纳,获得10
4秒前
子车茗应助科研通管家采纳,获得20
4秒前
CCL应助科研通管家采纳,获得60
4秒前
共享精神应助科研通管家采纳,获得10
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
4秒前
海皇星空发布了新的文献求助10
4秒前
子车茗应助科研通管家采纳,获得20
4秒前
子车茗应助科研通管家采纳,获得20
4秒前
我是老大应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
cc完成签到,获得积分10
4秒前
xiaobai发布了新的文献求助10
5秒前
刘济源完成签到,获得积分10
6秒前
科研通AI5应助sptyzl采纳,获得10
9秒前
10秒前
10秒前
11秒前
娃哈哈发布了新的文献求助10
12秒前
12秒前
wuxunxun2015发布了新的文献求助10
13秒前
13秒前
缥缈的青旋完成签到,获得积分10
14秒前
14秒前
包容的香菱完成签到,获得积分20
14秒前
17秒前
粗心的chen发布了新的文献求助10
17秒前
mimi完成签到,获得积分10
18秒前
ZQP发布了新的文献求助10
19秒前
Akim应助专注的芷珍采纳,获得10
19秒前
汉堡包应助好柿豆花生采纳,获得10
19秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
THE STRUCTURES OF 'SHR' AND 'YOU' IN MANDARIN CHINESE 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761895
求助须知:如何正确求助?哪些是违规求助? 3305631
关于积分的说明 10135016
捐赠科研通 3019709
什么是DOI,文献DOI怎么找? 1658368
邀请新用户注册赠送积分活动 792029
科研通“疑难数据库(出版商)”最低求助积分说明 754766