温室气体
环境科学
梯度升压
废水
污水处理
缺氧水域
电
环境工程
生化工程
计算机科学
工程类
生态学
化学
机器学习
环境化学
随机森林
电气工程
生物
作者
Yujun Huang,Yifan Xie,Yipeng Wu,Fanlin Meng,Chengyu He,Hao Zhang,Xiaoting Wang,Ailun Shui,Shuming Liu
标识
DOI:10.1021/acs.est.3c06482
摘要
Electricity consumption and sludge yield (SY) are important indirect greenhouse gas (GHG) emission sources in wastewater treatment plants (WWTPs). Predicting these byproducts is crucial for tailoring technology-related policy decisions. However, it challenges balancing mass balance models and mechanistic models that respectively have limited intervariable nexus representation and excessive requirements on operational parameters. Herein, we propose integrating two machine learning models, namely, gradient boosting tree (GBT) and deep learning (DL), to precisely pointwise model electricity consumption intensity (ECI) and SY for WWTPs in China. Results indicate that GBT and DL are capable of mining massive data to compensate for the lack of available parameters, providing a comprehensive modeling focusing on operation conditions and designed parameters, respectively. The proposed model reveals that lower ECI and SY were associated with higher treated wastewater volumes, more lenient effluent standards, and newer equipment. Moreover, ECI and SY showed different patterns when influent biochemical oxygen demand is above or below 100 mg/L in the anaerobic-anoxic-oxic process. Therefore, managing ECI and SY requires quantifying the coupling relationships between biochemical reactions instead of isolating each variable. Furthermore, the proposed models demonstrate potential economic-related inequalities resulting from synergizing water pollution and GHG emissions management.
科研通智能强力驱动
Strongly Powered by AbleSci AI