Modeling Indirect Greenhouse Gas Emissions Sources from Urban Wastewater Treatment Plants: Integrating Machine Learning Models to Compensate for Sparse Parameters with Abundant Observations

温室气体 环境科学 梯度升压 废水 污水处理 缺氧水域 环境工程 生化工程 计算机科学 工程类 生态学 化学 机器学习 环境化学 随机森林 电气工程 生物
作者
Yujun Huang,Yifan Xie,Yipeng Wu,Fanlin Meng,Chengyu He,Hao Zhang,Xiaoting Wang,Ailun Shui,Shuming Liu
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:57 (48): 19860-19870
标识
DOI:10.1021/acs.est.3c06482
摘要

Electricity consumption and sludge yield (SY) are important indirect greenhouse gas (GHG) emission sources in wastewater treatment plants (WWTPs). Predicting these byproducts is crucial for tailoring technology-related policy decisions. However, it challenges balancing mass balance models and mechanistic models that respectively have limited intervariable nexus representation and excessive requirements on operational parameters. Herein, we propose integrating two machine learning models, namely, gradient boosting tree (GBT) and deep learning (DL), to precisely pointwise model electricity consumption intensity (ECI) and SY for WWTPs in China. Results indicate that GBT and DL are capable of mining massive data to compensate for the lack of available parameters, providing a comprehensive modeling focusing on operation conditions and designed parameters, respectively. The proposed model reveals that lower ECI and SY were associated with higher treated wastewater volumes, more lenient effluent standards, and newer equipment. Moreover, ECI and SY showed different patterns when influent biochemical oxygen demand is above or below 100 mg/L in the anaerobic-anoxic-oxic process. Therefore, managing ECI and SY requires quantifying the coupling relationships between biochemical reactions instead of isolating each variable. Furthermore, the proposed models demonstrate potential economic-related inequalities resulting from synergizing water pollution and GHG emissions management.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
刚刚
刚刚
刚刚
刚刚
刚刚
Mic应助科研通管家采纳,获得10
刚刚
Mic应助科研通管家采纳,获得10
刚刚
顾矜应助科研通管家采纳,获得10
刚刚
打打应助科研通管家采纳,获得10
刚刚
汉堡包应助科研通管家采纳,获得10
刚刚
3秒前
大白发布了新的文献求助10
4秒前
和路雪发布了新的文献求助10
5秒前
crystal发布了新的文献求助10
9秒前
orixero应助1111chen采纳,获得10
16秒前
19秒前
tang12完成签到,获得积分10
20秒前
万能图书馆应助budingman采纳,获得10
21秒前
隐形曼青应助budingman采纳,获得10
21秒前
crystal完成签到,获得积分10
23秒前
PEIfq完成签到 ,获得积分10
25秒前
He发布了新的文献求助10
25秒前
26秒前
在水一方应助小鱼儿飞飞采纳,获得10
27秒前
huhuiya完成签到 ,获得积分10
29秒前
李爱国应助crystal采纳,获得10
30秒前
汝桢发布了新的文献求助10
31秒前
Chem34完成签到,获得积分0
32秒前
Ikejima发布了新的文献求助10
32秒前
33秒前
33秒前
mawen完成签到 ,获得积分10
35秒前
35秒前
35秒前
budingman发布了新的文献求助10
35秒前
budingman发布了新的文献求助10
36秒前
ypres完成签到 ,获得积分10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Psychological Well-being The Complexities of Mental and Emotional Health 500
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5856976
求助须知:如何正确求助?哪些是违规求助? 6325829
关于积分的说明 15635525
捐赠科研通 4971307
什么是DOI,文献DOI怎么找? 2681407
邀请新用户注册赠送积分活动 1625348
关于科研通互助平台的介绍 1582328