CrossFuse: A novel cross attention mechanism based infrared and visible image fusion approach

计算机科学 编码器 人工智能 融合 图像融合 模式识别(心理学) 互补性(分子生物学) 融合机制 融合规则 模态(人机交互) 图像(数学) 特征(语言学) 计算机视觉 模式 社会科学 哲学 语言学 脂质双层融合 生物 社会学 遗传学 操作系统
作者
Hui Li,Xiao‐Jun Wu
出处
期刊:Information Fusion [Elsevier BV]
卷期号:103: 102147-102147 被引量:73
标识
DOI:10.1016/j.inffus.2023.102147
摘要

Multimodal visual information fusion aims to integrate the multi-sensor data into a single image which contains more complementary information and less redundant features. However the complementary information is hard to extract, especially for infrared and visible images which contain big similarity gap between these two modalities. The common cross attention modules only consider the correlation, on the contrary, image fusion tasks need focus on complementarity (uncorrelation). Hence, in this paper, a novel cross attention mechanism (CAM) is proposed to enhance the complementary information. Furthermore, a two-stage training strategy based fusion scheme is presented to generate the fused images. For the first stage, two auto-encoder networks with same architecture are trained for each modality. Then, with the fixed encoders, the CAM and a decoder are trained in the second stage. With the trained CAM, features extracted from two modalities are integrated into one fused feature in which the complementary information is enhanced and the redundant features are reduced. Finally, the fused image can be generated by the trained decoder. The experimental results illustrate that our proposed fusion method obtains the SOTA fusion performance compared with the existing fusion networks. The codes of our fusion method will be available soon.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
华仔应助李伟采纳,获得10
3秒前
风清扬发布了新的文献求助10
6秒前
8秒前
8秒前
8秒前
9秒前
10秒前
子平完成签到 ,获得积分0
10秒前
CAOHOU举报谦让大雁求助涉嫌违规
10秒前
深情安青应助zz采纳,获得10
11秒前
wwwwc发布了新的文献求助10
13秒前
13秒前
Jasper应助璨澄采纳,获得10
13秒前
13秒前
fgjhg发布了新的文献求助30
14秒前
Ah发布了新的文献求助10
15秒前
XHH1994发布了新的文献求助10
16秒前
李伟发布了新的文献求助10
16秒前
17秒前
dsf完成签到,获得积分10
17秒前
Ava应助科研通管家采纳,获得10
18秒前
柯一一应助科研通管家采纳,获得10
18秒前
隐形曼青应助科研通管家采纳,获得80
18秒前
热切菩萨应助科研通管家采纳,获得30
18秒前
Lucas应助科研通管家采纳,获得10
18秒前
我嘞个豆应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
19秒前
深情安青应助潘潘采纳,获得10
22秒前
chen完成签到,获得积分0
23秒前
星辰大海应助叶叶采纳,获得10
23秒前
zz发布了新的文献求助10
24秒前
木子李33发布了新的文献求助10
24秒前
迎海完成签到,获得积分10
24秒前
25秒前
顾矜应助Yang采纳,获得10
28秒前
打打应助水墨橙子采纳,获得10
32秒前
想流浪的鱼完成签到 ,获得积分10
33秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962236
求助须知:如何正确求助?哪些是违规求助? 3508458
关于积分的说明 11140902
捐赠科研通 3241109
什么是DOI,文献DOI怎么找? 1791341
邀请新用户注册赠送积分活动 872825
科研通“疑难数据库(出版商)”最低求助积分说明 803382