CrossFuse: A novel cross attention mechanism based infrared and visible image fusion approach

计算机科学 编码器 人工智能 融合 图像融合 模式识别(心理学) 互补性(分子生物学) 融合机制 融合规则 模态(人机交互) 图像(数学) 特征(语言学) 计算机视觉 模式 哲学 社会学 操作系统 脂质双层融合 生物 遗传学 语言学 社会科学
作者
Hui Li,Xiao‐Jun Wu
出处
期刊:Information Fusion [Elsevier]
卷期号:103: 102147-102147 被引量:215
标识
DOI:10.1016/j.inffus.2023.102147
摘要

Multimodal visual information fusion aims to integrate the multi-sensor data into a single image which contains more complementary information and less redundant features. However the complementary information is hard to extract, especially for infrared and visible images which contain big similarity gap between these two modalities. The common cross attention modules only consider the correlation, on the contrary, image fusion tasks need focus on complementarity (uncorrelation). Hence, in this paper, a novel cross attention mechanism (CAM) is proposed to enhance the complementary information. Furthermore, a two-stage training strategy based fusion scheme is presented to generate the fused images. For the first stage, two auto-encoder networks with same architecture are trained for each modality. Then, with the fixed encoders, the CAM and a decoder are trained in the second stage. With the trained CAM, features extracted from two modalities are integrated into one fused feature in which the complementary information is enhanced and the redundant features are reduced. Finally, the fused image can be generated by the trained decoder. The experimental results illustrate that our proposed fusion method obtains the SOTA fusion performance compared with the existing fusion networks. The codes of our fusion method will be available soon.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
郭素玲完成签到,获得积分10
2秒前
白芝浩完成签到,获得积分10
2秒前
脑洞疼应助高高小兔子采纳,获得10
3秒前
凝聚各方发布了新的文献求助10
4秒前
小肥羊完成签到,获得积分10
4秒前
4秒前
lumos完成签到,获得积分20
4秒前
345发布了新的文献求助10
4秒前
LW完成签到,获得积分20
5秒前
5秒前
Neehi发布了新的文献求助10
5秒前
铱凡完成签到,获得积分10
5秒前
6秒前
zou252完成签到 ,获得积分10
6秒前
1111发布了新的文献求助10
6秒前
7秒前
badgerwithfisher完成签到,获得积分10
7秒前
8秒前
打打应助冷彬采纳,获得10
8秒前
8秒前
Rewi_Zhang完成签到,获得积分10
8秒前
9秒前
10秒前
左丘世立发布了新的文献求助10
10秒前
勤恳的糖豆完成签到,获得积分10
10秒前
王丽雅完成签到,获得积分20
11秒前
所所应助Alisa采纳,获得10
11秒前
量子星尘发布了新的文献求助10
11秒前
刻苦的安白完成签到,获得积分10
12秒前
12秒前
cl发布了新的文献求助30
12秒前
李健应助顽强的娃娃采纳,获得10
12秒前
12秒前
mmmooo完成签到,获得积分10
13秒前
13秒前
13秒前
冬灵完成签到,获得积分10
13秒前
Qingchen发布了新的文献求助10
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545653
求助须知:如何正确求助?哪些是违规求助? 4631693
关于积分的说明 14621876
捐赠科研通 4573347
什么是DOI,文献DOI怎么找? 2507486
邀请新用户注册赠送积分活动 1484199
关于科研通互助平台的介绍 1455485