自愈水凝胶
材料科学
石墨烯
拉伤
弯曲
电子皮肤
复合材料
丙烯酸酯
压力传感器
纳米技术
聚合物
共聚物
高分子化学
机械工程
医学
内科学
工程类
作者
Latafat Ara,Luqman Ali Shah,Rafi Ullah,Mansoor Khan
标识
DOI:10.1016/j.sna.2023.114782
摘要
Creating strain and pressure sensors based on hydrogels with excellent mechanical and conducting properties is a major problem for scientists in the fields of artificial intelligence, soft robotics, tissue engineering, human motion detection, electronic skin, etc. Therefore, in this study graphene oxide (GO) incorporated hydrophobically associated hydrogels with acrylamide (Amm) and butyl acrylate (BA) polymer segments with excellent mechanical properties, fracture strain of 1630%, and stress 551 kPa, showing good anti-fatigue resistance with five continuous cycles at 500% strain were developed. The hydrogel showed excellent strain response with conductivity of 0.246 S/m and can sense small strains of 1% to large strains of 700% with GF = 29.52 at 850% strain) and response time of 110 msec. The designed hydrogel can detect different human motions like wrest bending, elbow motion, finger at one angle as well as at different angles, puffing, and chewing different things. The hydrogel can also act as a pressure sensor and shows a clear response towards constant and uniform pressure. The prepared hydrogel behaved as an electronic pen and connected the electronic surface with human skin.
科研通智能强力驱动
Strongly Powered by AbleSci AI