Machine Learning-Based Drug Repositioning of Novel Janus Kinase 2 Inhibitors Utilizing Molecular Docking and Molecular Dynamic Simulation

机器学习 虚拟筛选 对接(动物) 托法替尼 随机森林 人工智能 分子描述符 计算机科学 药物重新定位 支持向量机 药物发现 IC50型 化学信息学 数量结构-活动关系 药品 计算生物学 化学 药理学 生物 生物化学 医学 计算化学 体外 类风湿性关节炎 护理部 免疫学
作者
Muhammad Yasir,Jinyoung Park,Eun‐Taek Han,Won Sun Park,Jin‐Hee Han,Yong-Soo Kwon,Hee Jae Lee,Wanjoo Chun
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (21): 6487-6500 被引量:8
标识
DOI:10.1021/acs.jcim.3c01090
摘要

Machine learning algorithms have been increasingly applied in drug development due to their efficiency and effectiveness. Machine learning-based drug repurposing can contribute to the identification of novel therapeutic applications for drugs with other indications. The current study used a trained machine learning model to screen a vast chemical library for new JAK2 inhibitors, the biological activities of which were reported. Reference JAK2 inhibitors, comprising 1911 compounds, have experimentally determined IC50 values. To generate the input to the machine learning model, reference compounds were subjected to RDKit, a cheminformatic toolkit, to extract molecular descriptors. A Random Forest Regression model from the Scikit-learn machine learning library was applied to obtain a predictive regression model and to analyze each molecular descriptor's role in determining IC50 values in the reference data set. Then, IC50 values of the library compounds, comprised of 1,576,903 compounds, were predicted using the generated regression model. Interestingly, some compounds that exhibit high IC50 values from the prediction were reported to possess JAK inhibition activity, which indicates the limitations of the prediction model. To confirm the JAK2 inhibition activity of predicted compounds, molecular docking and molecular dynamics simulation were carried out with the JAK inhibitor reference compound, tofacitinib. The binding affinity of docked compounds in the active region of JAK2 was also analyzed by the gmxMMPBSA approach. Furthermore, experimental validation confirmed the results from the computational analysis. Results showed highly comparable outcomes concerning tofacitinib. Conclusively, the machine learning model can efficiently improve the virtual screening of drugs and drug development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
光锥驳回了时度应助
1秒前
彭于晏应助zhou国兵采纳,获得10
2秒前
2秒前
土豪的惜蕊完成签到,获得积分10
2秒前
搜集达人应助缓慢的可乐采纳,获得10
2秒前
4秒前
4秒前
淼焱发布了新的文献求助10
5秒前
大模型应助满意的夜柳采纳,获得10
5秒前
12345完成签到,获得积分10
5秒前
小埋完成签到,获得积分10
5秒前
潇洒的怜阳完成签到,获得积分10
6秒前
wazhe发布了新的文献求助10
7秒前
大模型应助Morch2021采纳,获得10
9秒前
fhw关闭了fhw文献求助
10秒前
银河唯一的秘密完成签到,获得积分10
10秒前
yaoeer完成签到,获得积分20
11秒前
11秒前
慕青应助BJ_whc采纳,获得10
12秒前
12秒前
平常的g完成签到 ,获得积分10
12秒前
13秒前
12345发布了新的文献求助10
13秒前
李爱国应助跳跃隶采纳,获得10
13秒前
14秒前
霸气的思柔完成签到,获得积分10
15秒前
16秒前
快乐访旋发布了新的文献求助10
16秒前
16秒前
朴次次发布了新的文献求助10
16秒前
渡边卯卯发布了新的文献求助10
18秒前
MadaoZhang发布了新的文献求助30
18秒前
18秒前
慕青应助爪爪采纳,获得10
19秒前
JOKER完成签到 ,获得积分10
19秒前
小二郎应助Perseverance采纳,获得10
22秒前
sjj发布了新的文献求助10
23秒前
24秒前
HOPKINSON发布了新的文献求助20
24秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3247378
求助须知:如何正确求助?哪些是违规求助? 2890701
关于积分的说明 8264202
捐赠科研通 2559096
什么是DOI,文献DOI怎么找? 1387740
科研通“疑难数据库(出版商)”最低求助积分说明 650648
邀请新用户注册赠送积分活动 627326