Machine Learning-Based Drug Repositioning of Novel Janus Kinase 2 Inhibitors Utilizing Molecular Docking and Molecular Dynamic Simulation

机器学习 虚拟筛选 对接(动物) 托法替尼 随机森林 人工智能 分子描述符 计算机科学 药物重新定位 支持向量机 药物发现 IC50型 化学信息学 数量结构-活动关系 药品 计算生物学 化学 药理学 生物 生物化学 医学 计算化学 体外 类风湿性关节炎 护理部 免疫学
作者
Muhammad Yasir,Jinyoung Park,Eun‐Taek Han,Won Sun Park,Jin‐Hee Han,Yong-Soo Kwon,Hee Jae Lee,Wanjoo Chun
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (21): 6487-6500 被引量:15
标识
DOI:10.1021/acs.jcim.3c01090
摘要

Machine learning algorithms have been increasingly applied in drug development due to their efficiency and effectiveness. Machine learning-based drug repurposing can contribute to the identification of novel therapeutic applications for drugs with other indications. The current study used a trained machine learning model to screen a vast chemical library for new JAK2 inhibitors, the biological activities of which were reported. Reference JAK2 inhibitors, comprising 1911 compounds, have experimentally determined IC50 values. To generate the input to the machine learning model, reference compounds were subjected to RDKit, a cheminformatic toolkit, to extract molecular descriptors. A Random Forest Regression model from the Scikit-learn machine learning library was applied to obtain a predictive regression model and to analyze each molecular descriptor's role in determining IC50 values in the reference data set. Then, IC50 values of the library compounds, comprised of 1,576,903 compounds, were predicted using the generated regression model. Interestingly, some compounds that exhibit high IC50 values from the prediction were reported to possess JAK inhibition activity, which indicates the limitations of the prediction model. To confirm the JAK2 inhibition activity of predicted compounds, molecular docking and molecular dynamics simulation were carried out with the JAK inhibitor reference compound, tofacitinib. The binding affinity of docked compounds in the active region of JAK2 was also analyzed by the gmxMMPBSA approach. Furthermore, experimental validation confirmed the results from the computational analysis. Results showed highly comparable outcomes concerning tofacitinib. Conclusively, the machine learning model can efficiently improve the virtual screening of drugs and drug development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
充电宝应助Stroeve采纳,获得10
刚刚
1秒前
1秒前
务实小鸽子完成签到 ,获得积分10
1秒前
兰彻发布了新的文献求助10
3秒前
纯纯的秦完成签到 ,获得积分10
3秒前
3秒前
小二郎应助枯木逢春采纳,获得10
3秒前
duoduo发布了新的文献求助10
3秒前
XHY发布了新的文献求助10
4秒前
4秒前
闪闪的又亦完成签到 ,获得积分10
4秒前
研友_VZG7GZ应助思维隋采纳,获得10
5秒前
打打应助大亚基采纳,获得10
5秒前
濮阳映萱发布了新的文献求助10
5秒前
5秒前
orixero应助77采纳,获得10
6秒前
Ginkgo发布了新的文献求助10
6秒前
慕青应助奔跑的棉花采纳,获得10
6秒前
6秒前
海风完成签到,获得积分10
7秒前
隐形曼青应助xixilulixiu采纳,获得10
7秒前
8秒前
yaoqiangshi发布了新的文献求助10
8秒前
123发布了新的文献求助10
9秒前
欣喜念桃完成签到 ,获得积分20
9秒前
9秒前
10秒前
10秒前
10秒前
10秒前
吴灵完成签到,获得积分10
11秒前
11秒前
传奇3应助Chengcheng采纳,获得10
11秒前
11秒前
小二郎应助4444采纳,获得10
12秒前
xctdyl1992发布了新的文献求助10
12秒前
12秒前
丘比特应助四夕采纳,获得10
12秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978852
求助须知:如何正确求助?哪些是违规求助? 3522781
关于积分的说明 11214876
捐赠科研通 3260258
什么是DOI,文献DOI怎么找? 1799853
邀请新用户注册赠送积分活动 878711
科研通“疑难数据库(出版商)”最低求助积分说明 807059