Machine Learning-Based Drug Repositioning of Novel Janus Kinase 2 Inhibitors Utilizing Molecular Docking and Molecular Dynamic Simulation

机器学习 虚拟筛选 对接(动物) 托法替尼 随机森林 人工智能 分子描述符 计算机科学 药物重新定位 支持向量机 药物发现 IC50型 化学信息学 数量结构-活动关系 药品 计算生物学 化学 药理学 生物 生物化学 医学 计算化学 体外 类风湿性关节炎 护理部 免疫学
作者
Muhammad Yasir,Jinyoung Park,Eun‐Taek Han,Won Sun Park,Jin‐Hee Han,Yong-Soo Kwon,Hee Jae Lee,Wanjoo Chun
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (21): 6487-6500 被引量:21
标识
DOI:10.1021/acs.jcim.3c01090
摘要

Machine learning algorithms have been increasingly applied in drug development due to their efficiency and effectiveness. Machine learning-based drug repurposing can contribute to the identification of novel therapeutic applications for drugs with other indications. The current study used a trained machine learning model to screen a vast chemical library for new JAK2 inhibitors, the biological activities of which were reported. Reference JAK2 inhibitors, comprising 1911 compounds, have experimentally determined IC50 values. To generate the input to the machine learning model, reference compounds were subjected to RDKit, a cheminformatic toolkit, to extract molecular descriptors. A Random Forest Regression model from the Scikit-learn machine learning library was applied to obtain a predictive regression model and to analyze each molecular descriptor's role in determining IC50 values in the reference data set. Then, IC50 values of the library compounds, comprised of 1,576,903 compounds, were predicted using the generated regression model. Interestingly, some compounds that exhibit high IC50 values from the prediction were reported to possess JAK inhibition activity, which indicates the limitations of the prediction model. To confirm the JAK2 inhibition activity of predicted compounds, molecular docking and molecular dynamics simulation were carried out with the JAK inhibitor reference compound, tofacitinib. The binding affinity of docked compounds in the active region of JAK2 was also analyzed by the gmxMMPBSA approach. Furthermore, experimental validation confirmed the results from the computational analysis. Results showed highly comparable outcomes concerning tofacitinib. Conclusively, the machine learning model can efficiently improve the virtual screening of drugs and drug development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
齐羽发布了新的文献求助10
1秒前
夜小娘完成签到,获得积分10
1秒前
丘比特应助李宗彬采纳,获得10
1秒前
尕尕娃娃328完成签到,获得积分20
2秒前
zgg发布了新的文献求助50
2秒前
思源应助求求了采纳,获得10
2秒前
Dita发布了新的文献求助10
3秒前
ei发布了新的文献求助10
3秒前
光亮觅云发布了新的文献求助30
3秒前
浮游应助张亚博采纳,获得10
3秒前
深情安青应助张亚博采纳,获得10
3秒前
4秒前
chy发布了新的文献求助10
4秒前
4秒前
含蓄的小熊猫完成签到 ,获得积分10
5秒前
YXYYXYYXY完成签到,获得积分10
5秒前
7秒前
学术的刘发布了新的文献求助10
7秒前
wdwd完成签到,获得积分10
8秒前
杨哈哈哈完成签到 ,获得积分10
8秒前
研友_VZG7GZ应助风清扬采纳,获得30
9秒前
New完成签到,获得积分10
9秒前
10秒前
WJL完成签到 ,获得积分10
10秒前
天才Kitty猫完成签到,获得积分10
11秒前
baiseqiutian发布了新的文献求助10
11秒前
Havoc完成签到,获得积分10
12秒前
Ting发布了新的文献求助10
12秒前
XU完成签到,获得积分10
12秒前
苏东方发布了新的文献求助10
12秒前
13秒前
ddd发布了新的文献求助10
14秒前
XZY完成签到,获得积分10
14秒前
14秒前
隐形曼青应助贝肯尼采纳,获得10
15秒前
cyh应助大胆的雪糕采纳,获得10
15秒前
科研通AI6应助小风吹着采纳,获得10
16秒前
16秒前
Wxc发布了新的文献求助10
17秒前
Dita完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 570
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5360761
求助须知:如何正确求助?哪些是违规求助? 4491279
关于积分的说明 13981825
捐赠科研通 4393949
什么是DOI,文献DOI怎么找? 2413668
邀请新用户注册赠送积分活动 1406502
关于科研通互助平台的介绍 1381004