Quantifying soil erosion and influential factors in Guwahati's urban watershed using statistical analysis, machine and deep learning

通用土壤流失方程 环境科学 土地退化 排水密度 水文学(农业) 腐蚀 分水岭 土地利用 土壤科学 地质学 计算机科学 生态学 机器学习 古生物学 岩土工程 土壤流失 生物
作者
Ishita Afreen Ahmed,Mohd Waseem Naikoo,Mirza Razi Imam Baig,. Shahfahad,G. V. Ramana,Atiqur Rahman
出处
期刊:Remote Sensing Applications: Society and Environment [Elsevier]
卷期号:33: 101088-101088 被引量:3
标识
DOI:10.1016/j.rsase.2023.101088
摘要

Soil erosion is a complex environmental issue influenced by rapid climate change, resource exploitation, and soil degradation etc. These factors have triggered global acceleration of soil erosion, primarily due to rapid transformation of topographical features and landscape composition. Guwahati, a thriving financial hub in northeast India, witnessing significant landscape change on both the banks of the Brahmaputra river therefore becomes disaster-prone zones. Hence, the objective of the present study is to identify soil erosion factors and assess its impact using statistical, machine learning, and deep learning techniques. It employs Revised Universal Soil Loss Equation (RUSLE) model for soil erosion estimation, furthermore analyzing physical attributes such as morphometrics, topography, drainage networks, and land use fragmentation indicators. Partial Least Squares Regression (PLSR), Random Forest (RF) sensitivity analysis, and Deep Neural Network (DNN) techniques are used in the study. The RUSLE model showed a significant range of soil erosion rates in the study area, spanning from 168.16 to 188.60 tonnes/hectare/year. Particularly, Silsako, Bharalu, North Guwahati, and Foreshore experiences the most severe soil loss. Amongst all influential factors contributing to soil erosion, the most important key parameters are rainfall, drainage density, landscape fragmentation components (such as cohesion index, edge density, and Shannon diversity index), along with stream frequency and basin relief, as indicated by the RF and DNN models. Furthermore, the PLSR analysis assigned linear weights to variables, highlighting the effectiveness of 14 out of 15 independent predictors derived from basin characteristics in accurately estimating soil erosion. This study provides important quantitative insights through rigorous scientific analysis, enabling well-informed decisions in urban watershed management within the Brahmaputra region. Furthermore, it enhances understanding of the area's urgent needs, societal implications, and environmental conditions related to soil erosion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助zh采纳,获得10
刚刚
DEFEND完成签到,获得积分10
1秒前
1秒前
无花果应助爱笑的巧凡采纳,获得10
2秒前
2秒前
啾啾尼泊尔完成签到,获得积分10
2秒前
大个应助FF采纳,获得10
3秒前
不配.应助幽一采纳,获得10
3秒前
qym完成签到,获得积分10
3秒前
Mimi完成签到,获得积分20
4秒前
Frank发布了新的文献求助50
4秒前
11发布了新的文献求助10
5秒前
帕克发布了新的文献求助10
7秒前
8秒前
宁nn完成签到,获得积分10
9秒前
桃子发布了新的文献求助10
10秒前
10秒前
细心的大叔完成签到,获得积分10
11秒前
11秒前
李健的粉丝团团长应助11采纳,获得10
12秒前
12秒前
和谐的土豆完成签到,获得积分10
13秒前
光亮的夜香完成签到,获得积分20
14秒前
14秒前
情怀应助悦悦采纳,获得10
16秒前
17秒前
Singularity应助帕克采纳,获得20
18秒前
发财发布了新的文献求助10
19秒前
19秒前
ninini完成签到,获得积分20
20秒前
21秒前
22秒前
22秒前
彭于晏应助PSCs采纳,获得10
23秒前
zh发布了新的文献求助10
24秒前
Yziii应助你の雷霸霸采纳,获得20
24秒前
24秒前
25秒前
zqy发布了新的文献求助10
25秒前
小巧的小松鼠完成签到,获得积分10
25秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124786
求助须知:如何正确求助?哪些是违规求助? 2775057
关于积分的说明 7725364
捐赠科研通 2430615
什么是DOI,文献DOI怎么找? 1291245
科研通“疑难数据库(出版商)”最低求助积分说明 622091
版权声明 600323