Quantifying soil erosion and influential factors in Guwahati's urban watershed using statistical analysis, machine and deep learning

通用土壤流失方程 环境科学 土地退化 排水密度 水文学(农业) 腐蚀 分水岭 土地利用 土壤科学 地质学 计算机科学 生态学 机器学习 古生物学 岩土工程 土壤流失 生物
作者
Ishita Afreen Ahmed,Mohd Waseem Naikoo,Mirza Razi Imam Baig,. Shahfahad,G. V. Ramana,Atiqur Rahman
出处
期刊:Remote Sensing Applications: Society and Environment [Elsevier]
卷期号:33: 101088-101088 被引量:3
标识
DOI:10.1016/j.rsase.2023.101088
摘要

Soil erosion is a complex environmental issue influenced by rapid climate change, resource exploitation, and soil degradation etc. These factors have triggered global acceleration of soil erosion, primarily due to rapid transformation of topographical features and landscape composition. Guwahati, a thriving financial hub in northeast India, witnessing significant landscape change on both the banks of the Brahmaputra river therefore becomes disaster-prone zones. Hence, the objective of the present study is to identify soil erosion factors and assess its impact using statistical, machine learning, and deep learning techniques. It employs Revised Universal Soil Loss Equation (RUSLE) model for soil erosion estimation, furthermore analyzing physical attributes such as morphometrics, topography, drainage networks, and land use fragmentation indicators. Partial Least Squares Regression (PLSR), Random Forest (RF) sensitivity analysis, and Deep Neural Network (DNN) techniques are used in the study. The RUSLE model showed a significant range of soil erosion rates in the study area, spanning from 168.16 to 188.60 tonnes/hectare/year. Particularly, Silsako, Bharalu, North Guwahati, and Foreshore experiences the most severe soil loss. Amongst all influential factors contributing to soil erosion, the most important key parameters are rainfall, drainage density, landscape fragmentation components (such as cohesion index, edge density, and Shannon diversity index), along with stream frequency and basin relief, as indicated by the RF and DNN models. Furthermore, the PLSR analysis assigned linear weights to variables, highlighting the effectiveness of 14 out of 15 independent predictors derived from basin characteristics in accurately estimating soil erosion. This study provides important quantitative insights through rigorous scientific analysis, enabling well-informed decisions in urban watershed management within the Brahmaputra region. Furthermore, it enhances understanding of the area's urgent needs, societal implications, and environmental conditions related to soil erosion.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhonglv7应助满意花生采纳,获得10
刚刚
刚刚
1秒前
无极微光应助傲安采纳,获得20
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
Michelle完成签到,获得积分10
2秒前
2秒前
3秒前
摇摆小狗发布了新的文献求助10
3秒前
Lillian发布了新的文献求助30
3秒前
3秒前
英姑应助饶天源采纳,获得10
4秒前
4秒前
4秒前
M2106发布了新的文献求助10
4秒前
充电宝应助科研通管家采纳,获得10
5秒前
今后应助科研通管家采纳,获得10
5秒前
香蕉诗蕊应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
我是老大应助科研通管家采纳,获得10
6秒前
667788完成签到,获得积分10
6秒前
赘婿应助科研通管家采纳,获得10
6秒前
niNe3YUE应助科研通管家采纳,获得10
6秒前
白许四十完成签到,获得积分10
6秒前
6秒前
6秒前
浮游应助科研通管家采纳,获得10
6秒前
la完成签到 ,获得积分10
6秒前
科目三应助科研通管家采纳,获得10
6秒前
6秒前
田様应助Pa1mary采纳,获得10
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
7秒前
领导范儿应助现代水卉采纳,获得10
7秒前
纽曼发布了新的文献求助10
7秒前
pluto应助科研通管家采纳,获得10
7秒前
脑洞疼应助科研通管家采纳,获得10
7秒前
星辰大海应助科研通管家采纳,获得50
7秒前
香蕉诗蕊应助科研通管家采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711456
求助须知:如何正确求助?哪些是违规求助? 5203871
关于积分的说明 15264340
捐赠科研通 4863728
什么是DOI,文献DOI怎么找? 2610906
邀请新用户注册赠送积分活动 1561227
关于科研通互助平台的介绍 1518627