Quantifying soil erosion and influential factors in Guwahati's urban watershed using statistical analysis, machine and deep learning

通用土壤流失方程 环境科学 土地退化 排水密度 水文学(农业) 腐蚀 分水岭 土地利用 土壤科学 地质学 计算机科学 生态学 机器学习 古生物学 岩土工程 土壤流失 生物
作者
Ishita Afreen Ahmed,Mohd Waseem Naikoo,Mirza Razi Imam Baig,. Shahfahad,G. V. Ramana,Atiqur Rahman
出处
期刊:Remote Sensing Applications: Society and Environment [Elsevier]
卷期号:33: 101088-101088 被引量:3
标识
DOI:10.1016/j.rsase.2023.101088
摘要

Soil erosion is a complex environmental issue influenced by rapid climate change, resource exploitation, and soil degradation etc. These factors have triggered global acceleration of soil erosion, primarily due to rapid transformation of topographical features and landscape composition. Guwahati, a thriving financial hub in northeast India, witnessing significant landscape change on both the banks of the Brahmaputra river therefore becomes disaster-prone zones. Hence, the objective of the present study is to identify soil erosion factors and assess its impact using statistical, machine learning, and deep learning techniques. It employs Revised Universal Soil Loss Equation (RUSLE) model for soil erosion estimation, furthermore analyzing physical attributes such as morphometrics, topography, drainage networks, and land use fragmentation indicators. Partial Least Squares Regression (PLSR), Random Forest (RF) sensitivity analysis, and Deep Neural Network (DNN) techniques are used in the study. The RUSLE model showed a significant range of soil erosion rates in the study area, spanning from 168.16 to 188.60 tonnes/hectare/year. Particularly, Silsako, Bharalu, North Guwahati, and Foreshore experiences the most severe soil loss. Amongst all influential factors contributing to soil erosion, the most important key parameters are rainfall, drainage density, landscape fragmentation components (such as cohesion index, edge density, and Shannon diversity index), along with stream frequency and basin relief, as indicated by the RF and DNN models. Furthermore, the PLSR analysis assigned linear weights to variables, highlighting the effectiveness of 14 out of 15 independent predictors derived from basin characteristics in accurately estimating soil erosion. This study provides important quantitative insights through rigorous scientific analysis, enabling well-informed decisions in urban watershed management within the Brahmaputra region. Furthermore, it enhances understanding of the area's urgent needs, societal implications, and environmental conditions related to soil erosion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助luoshi采纳,获得10
刚刚
小王发布了新的文献求助10
刚刚
hahah完成签到,获得积分10
刚刚
刚刚
yang完成签到 ,获得积分10
1秒前
lynn_zhang完成签到,获得积分10
1秒前
化学狗发布了新的文献求助10
2秒前
2秒前
浩浩完成签到,获得积分10
3秒前
胡图图完成签到,获得积分10
3秒前
包容的剑发布了新的文献求助10
4秒前
5秒前
小马甲应助细腻沅采纳,获得10
5秒前
6秒前
招财不肥完成签到,获得积分10
6秒前
6秒前
77完成签到,获得积分10
7秒前
NexusExplorer应助顾阿秀采纳,获得10
7秒前
7秒前
科研通AI5应助二二二采纳,获得10
8秒前
terrell完成签到,获得积分10
8秒前
David完成签到,获得积分10
8秒前
8秒前
科研通AI2S应助Denmark采纳,获得10
9秒前
9秒前
望望旺仔牛奶完成签到,获得积分10
9秒前
香蕉觅云应助luoshi采纳,获得10
10秒前
Zn应助gnr2000采纳,获得10
10秒前
二小完成签到,获得积分20
10秒前
拼搏思卉完成签到,获得积分10
10秒前
内向音响发布了新的文献求助10
10秒前
上官若男应助曼尼采纳,获得10
11秒前
飞羽发布了新的文献求助10
11秒前
科研通AI2S应助song99采纳,获得10
11秒前
momi完成签到 ,获得积分10
11秒前
哈哈哈呢完成签到 ,获得积分20
11秒前
LiShin发布了新的文献求助10
11秒前
phylicia发布了新的文献求助10
12秒前
萝卜完成签到,获得积分10
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762