已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-gate Mixture of Multi-view Graph Contrastive Learning on Electronic Health Record

计算机科学 图形 利用 人工智能 机器学习 任务(项目管理) 任务分析 图形数据库 特征学习 深度学习 多任务学习 理论计算机科学 计算机安全 经济 管理
作者
Yu Cao,Qian Wang,Xu Wang,Dezhong Peng,Peilin Li
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13 被引量:5
标识
DOI:10.1109/jbhi.2023.3325221
摘要

Electronic Health Record (EHR) is the digital form of patient visits containing various medical data, including diagnosis, treatment, and lab events. Representation learning of EHR with deep learning methods has been beneficial for patient-related prediction tasks. Recently, studies have focused on revealing the inherent graph structure between medical events in EHR. Graph neural network (GNN) methods are prevalent and perform well in various prediction tasks. However, the inherent relationships between various medical events must be marked, which is complicated and time-consuming. Most research works adopt the straightforward structure of GNN models on a single prediction task which could not fully exploit the potential of EHR representations. Compared with previous work, the multi-task prediction could utilize the latent information of concealed correlations between different prediction tasks. In addition, self-contrastive learning on graphs could improve the representation learned by GNN. We propose a multi-gate mixture of multi-view graph contrastive learning (MMMGCL) method, aiming to get a more reasonable EHR representation and improve the performances of downstream tasks. First, each patient visit is represented as a graph with a well-designed hierarchically fully-connected pattern. Second, node features in the manually constructed graph are pre-trained via the Glove method with hierarchical ontology knowledge. Finally, MMMGCL processes the pre-trained graph and adopts a joint learning strategy to simultaneously optimize task and contrastive losses. We verify our method on two large open-source medical datasets, Medical Information Mart for Intensive Care (MIMIC-III) and the eICU Collaborative Research Database (eICU). Experiment results show that our method could improve performance compared to straightforward graph-based methods on prediction tasks of patient readmission, mortality, and length of stay.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丫丫完成签到 ,获得积分10
刚刚
刚刚
Kishi完成签到,获得积分10
3秒前
李李原上草完成签到 ,获得积分10
5秒前
6秒前
烟花应助LMDD采纳,获得10
8秒前
海聪天宇完成签到,获得积分10
8秒前
蒋灵馨完成签到 ,获得积分10
8秒前
不知道是谁完成签到,获得积分10
11秒前
liu发布了新的文献求助10
11秒前
李爱国应助小太阳采纳,获得10
11秒前
陌上尘开完成签到 ,获得积分10
16秒前
善学以致用应助Boombomb采纳,获得10
19秒前
zmaifyc完成签到 ,获得积分10
20秒前
ljy阿完成签到 ,获得积分10
20秒前
Muncy完成签到 ,获得积分10
21秒前
23秒前
24秒前
鱼鱼完成签到 ,获得积分10
24秒前
叶叶完成签到 ,获得积分10
27秒前
27秒前
zxy完成签到 ,获得积分10
28秒前
insomnia417完成签到,获得积分0
28秒前
明朗完成签到 ,获得积分10
29秒前
Rick发布了新的文献求助10
30秒前
努力的咩咩完成签到 ,获得积分10
31秒前
Boombomb发布了新的文献求助10
32秒前
kkk完成签到 ,获得积分10
32秒前
Doctor_Mill完成签到,获得积分10
33秒前
ZYY完成签到,获得积分10
33秒前
105完成签到 ,获得积分10
34秒前
abc完成签到 ,获得积分10
35秒前
飞鱼z完成签到 ,获得积分10
36秒前
37秒前
科研通AI5应助跳跃妙彤采纳,获得10
38秒前
热心易绿完成签到 ,获得积分10
38秒前
斯文无敌完成签到,获得积分10
38秒前
okk完成签到 ,获得积分10
39秒前
JamesPei应助LDD采纳,获得10
40秒前
43秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Theranostics and Precision Medicine for the Management of Hepatocellular Carcinoma 500
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3674205
求助须知:如何正确求助?哪些是违规求助? 3229618
关于积分的说明 9786440
捐赠科研通 2940150
什么是DOI,文献DOI怎么找? 1611710
邀请新用户注册赠送积分活动 761012
科研通“疑难数据库(出版商)”最低求助积分说明 736352