Multi-gate Mixture of Multi-view Graph Contrastive Learning on Electronic Health Record

计算机科学 图形 利用 人工智能 机器学习 任务(项目管理) 任务分析 图形数据库 特征学习 深度学习 多任务学习 理论计算机科学 计算机安全 经济 管理
作者
Yu Cao,Qian Wang,Xu Wang,Dezhong Peng,Peilin Li
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13 被引量:6
标识
DOI:10.1109/jbhi.2023.3325221
摘要

Electronic Health Record (EHR) is the digital form of patient visits containing various medical data, including diagnosis, treatment, and lab events. Representation learning of EHR with deep learning methods has been beneficial for patient-related prediction tasks. Recently, studies have focused on revealing the inherent graph structure between medical events in EHR. Graph neural network (GNN) methods are prevalent and perform well in various prediction tasks. However, the inherent relationships between various medical events must be marked, which is complicated and time-consuming. Most research works adopt the straightforward structure of GNN models on a single prediction task which could not fully exploit the potential of EHR representations. Compared with previous work, the multi-task prediction could utilize the latent information of concealed correlations between different prediction tasks. In addition, self-contrastive learning on graphs could improve the representation learned by GNN. We propose a multi-gate mixture of multi-view graph contrastive learning (MMMGCL) method, aiming to get a more reasonable EHR representation and improve the performances of downstream tasks. First, each patient visit is represented as a graph with a well-designed hierarchically fully-connected pattern. Second, node features in the manually constructed graph are pre-trained via the Glove method with hierarchical ontology knowledge. Finally, MMMGCL processes the pre-trained graph and adopts a joint learning strategy to simultaneously optimize task and contrastive losses. We verify our method on two large open-source medical datasets, Medical Information Mart for Intensive Care (MIMIC-III) and the eICU Collaborative Research Database (eICU). Experiment results show that our method could improve performance compared to straightforward graph-based methods on prediction tasks of patient readmission, mortality, and length of stay.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DA发布了新的文献求助10
1秒前
桃子e发布了新的文献求助10
4秒前
bkagyin应助谨慎冰海采纳,获得10
4秒前
5秒前
动听若灵完成签到,获得积分10
5秒前
5秒前
6秒前
格格完成签到 ,获得积分10
7秒前
打打应助小胖采纳,获得10
11秒前
时一列车关注了科研通微信公众号
11秒前
XC发布了新的文献求助30
13秒前
13秒前
lym发布了新的文献求助10
16秒前
隐形曼青应助研友_LN32Mn采纳,获得10
16秒前
16秒前
sxb10101应助米热采纳,获得10
17秒前
菟丝子完成签到,获得积分10
17秒前
科目三应助DA采纳,获得10
19秒前
小宋发布了新的文献求助10
19秒前
淡定访琴完成签到,获得积分10
22秒前
zhao 123完成签到 ,获得积分10
24秒前
水的叶子66完成签到,获得积分10
25秒前
wanci应助粗心的从露采纳,获得10
28秒前
李健的粉丝团团长应助gxc采纳,获得10
32秒前
海滩长颈鹿完成签到,获得积分10
33秒前
35秒前
soda完成签到,获得积分10
35秒前
37秒前
orixero应助等待的谷波采纳,获得10
37秒前
OKOK完成签到,获得积分10
37秒前
38秒前
yohoo发布了新的文献求助10
39秒前
40秒前
41秒前
OKOK发布了新的文献求助10
41秒前
木又权完成签到,获得积分10
43秒前
gkads完成签到 ,获得积分10
44秒前
44秒前
45秒前
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
生活在欺瞒的年代:傅树介政治斗争回忆录 260
Functional Analysis 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5872888
求助须知:如何正确求助?哪些是违规求助? 6492970
关于积分的说明 15670072
捐赠科研通 4990278
什么是DOI,文献DOI怎么找? 2690192
邀请新用户注册赠送积分活动 1632707
关于科研通互助平台的介绍 1590589