Attention-UNet architectures with pretrained backbones for multi-class cardiac MR image segmentation

分割 Sørensen–骰子系数 人工智能 掷骰子 深度学习 磁共振成像 计算机科学 模式识别(心理学) 图像分割 医学 放射科 数学 统计
作者
Niharika Das,Sujoy Das
出处
期刊:Current Problems in Cardiology [Elsevier]
卷期号:49 (1): 102129-102129 被引量:5
标识
DOI:10.1016/j.cpcardiol.2023.102129
摘要

Segmentation architectures based on deep learning proficient extraordinary results in medical imaging technologies. Computed tomography (CT) images and Magnetic Resonance Imaging (MRI) in diagnosis and treatment are increasing and significantly support the diagnostic process by removing the bottlenecks of manual segmentation. Cardiac Magnetic Resonance Imaging (CMRI) is a state-of-the-art imaging technique used to acquire vital heart measurements and has received extensive attention from researchers for automatic segmentation. Deep learning methods offer high-precision segmentation but still pose several difficulties, such as pixel homogeneity in nearby organs. The motivated study using the attention mechanism approach was introduced for medical images for automated algorithms. The experiment focuses on observing the impact of the attention mechanism with and without pretrained backbone networks on the UNet model. For the same, three networks are considered: Attention-UNet, Attention-UNet with resnet50 pretrained backbone and Attention-UNet with densenet121 pretrained backbone. The experiments are performed on the ACDC Challenge 2017 dataset. The performance is evaluated by conducting a comparative analysis based on the Dice Coefficient, IoU Coefficient, and cross-entropy loss calculations. The Attention-UNet, Attention-UNet with resnet50 pretrained backbone, and Attention-UNet with densenet121 pretrained backbone networks obtained Dice Coefficients of 0.9889, 0.9720, and 0.9801, respectively, along with corresponding IoU scores of 0.9781, 0.9457, and 0.9612. Results compared with the state-of-the-art methods indicate that the methods are on par with, or even superior in terms of both the Dice coefficient and Intersection-over-union.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助冷傲迎梦采纳,获得10
1秒前
陶醉觅夏发布了新的文献求助200
2秒前
2秒前
exile完成签到,获得积分10
3秒前
朱一龙发布了新的文献求助10
3秒前
mawenting完成签到 ,获得积分10
5秒前
zeke完成签到,获得积分10
6秒前
科研通AI5应助solobang采纳,获得10
7秒前
7秒前
小宇OvO发布了新的文献求助10
8秒前
8秒前
忘羡222完成签到,获得积分10
8秒前
专一发布了新的文献求助10
10秒前
跳跃曼文完成签到,获得积分10
11秒前
干将莫邪完成签到,获得积分10
12秒前
SYLH应助exile采纳,获得10
12秒前
小二郎应助魔幻的从梦采纳,获得10
13秒前
14秒前
雪鸽鸽发布了新的文献求助10
14秒前
15秒前
16秒前
16秒前
17秒前
科研通AI5应助朱一龙采纳,获得30
18秒前
SharonDu完成签到 ,获得积分10
19秒前
ayin完成签到,获得积分10
19秒前
20秒前
20秒前
啦啦啦完成签到,获得积分10
20秒前
coffee发布了新的文献求助10
21秒前
21秒前
科研混子发布了新的文献求助10
21秒前
咿咿呀呀发布了新的文献求助10
21秒前
酷酷碧发布了新的文献求助10
23秒前
飘逸宛丝完成签到,获得积分10
24秒前
qzaima发布了新的文献求助10
24秒前
米酒完成签到,获得积分10
26秒前
step_stone给step_stone的求助进行了留言
26秒前
乐乐应助ayin采纳,获得10
27秒前
无花果应助hhh采纳,获得10
29秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824