已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Attention-UNet architectures with pretrained backbones for multi-class cardiac MR image segmentation

分割 Sørensen–骰子系数 人工智能 掷骰子 深度学习 磁共振成像 计算机科学 模式识别(心理学) 图像分割 医学 放射科 数学 统计
作者
Niharika Das,Sujoy Das
出处
期刊:Current Problems in Cardiology [Elsevier BV]
卷期号:49 (1): 102129-102129 被引量:9
标识
DOI:10.1016/j.cpcardiol.2023.102129
摘要

Segmentation architectures based on deep learning proficient extraordinary results in medical imaging technologies. Computed tomography (CT) images and Magnetic Resonance Imaging (MRI) in diagnosis and treatment are increasing and significantly support the diagnostic process by removing the bottlenecks of manual segmentation. Cardiac Magnetic Resonance Imaging (CMRI) is a state-of-the-art imaging technique used to acquire vital heart measurements and has received extensive attention from researchers for automatic segmentation. Deep learning methods offer high-precision segmentation but still pose several difficulties, such as pixel homogeneity in nearby organs. The motivated study using the attention mechanism approach was introduced for medical images for automated algorithms. The experiment focuses on observing the impact of the attention mechanism with and without pretrained backbone networks on the UNet model. For the same, three networks are considered: Attention-UNet, Attention-UNet with resnet50 pretrained backbone and Attention-UNet with densenet121 pretrained backbone. The experiments are performed on the ACDC Challenge 2017 dataset. The performance is evaluated by conducting a comparative analysis based on the Dice Coefficient, IoU Coefficient, and cross-entropy loss calculations. The Attention-UNet, Attention-UNet with resnet50 pretrained backbone, and Attention-UNet with densenet121 pretrained backbone networks obtained Dice Coefficients of 0.9889, 0.9720, and 0.9801, respectively, along with corresponding IoU scores of 0.9781, 0.9457, and 0.9612. Results compared with the state-of-the-art methods indicate that the methods are on par with, or even superior in terms of both the Dice coefficient and Intersection-over-union.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
饿的糕发布了新的文献求助10
刚刚
1秒前
万能图书馆应助colourz采纳,获得10
2秒前
懵懂的紫萍完成签到,获得积分10
3秒前
3秒前
CodeCraft应助张祖成采纳,获得10
4秒前
橘子发布了新的文献求助10
5秒前
维维完成签到 ,获得积分20
5秒前
8秒前
小海完成签到,获得积分10
8秒前
ple发布了新的文献求助10
8秒前
应夏山完成签到 ,获得积分0
12秒前
西瓜完成签到 ,获得积分10
14秒前
14秒前
Alan发布了新的文献求助10
15秒前
zzd发布了新的文献求助10
15秒前
15秒前
顺式作用元件完成签到,获得积分10
16秒前
丘比特应助zaojunqi采纳,获得10
18秒前
18秒前
colourz发布了新的文献求助10
18秒前
Flanker发布了新的文献求助10
18秒前
爆米花应助小白白采纳,获得30
20秒前
21秒前
张祖成发布了新的文献求助10
22秒前
Alan完成签到,获得积分10
23秒前
簌落完成签到,获得积分10
24秒前
25秒前
wcx发布了新的文献求助10
27秒前
王子完成签到,获得积分10
27秒前
purplelove发布了新的文献求助10
28秒前
28秒前
stevenliu67完成签到,获得积分10
31秒前
Flanker发布了新的文献求助10
33秒前
34秒前
zyy_cwdl发布了新的文献求助30
34秒前
34秒前
37秒前
37秒前
顺心tt完成签到,获得积分10
37秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956731
求助须知:如何正确求助?哪些是违规求助? 3502835
关于积分的说明 11110432
捐赠科研通 3233801
什么是DOI,文献DOI怎么找? 1787571
邀请新用户注册赠送积分活动 870685
科研通“疑难数据库(出版商)”最低求助积分说明 802172