Attention-UNet architectures with pretrained backbones for multi-class cardiac MR image segmentation

分割 Sørensen–骰子系数 人工智能 掷骰子 深度学习 磁共振成像 计算机科学 模式识别(心理学) 图像分割 医学 放射科 数学 统计
作者
Niharika Das,Sujoy Das
出处
期刊:Current Problems in Cardiology [Elsevier]
卷期号:49 (1): 102129-102129 被引量:25
标识
DOI:10.1016/j.cpcardiol.2023.102129
摘要

Segmentation architectures based on deep learning proficient extraordinary results in medical imaging technologies. Computed tomography (CT) images and Magnetic Resonance Imaging (MRI) in diagnosis and treatment are increasing and significantly support the diagnostic process by removing the bottlenecks of manual segmentation. Cardiac Magnetic Resonance Imaging (CMRI) is a state-of-the-art imaging technique used to acquire vital heart measurements and has received extensive attention from researchers for automatic segmentation. Deep learning methods offer high-precision segmentation but still pose several difficulties, such as pixel homogeneity in nearby organs. The motivated study using the attention mechanism approach was introduced for medical images for automated algorithms. The experiment focuses on observing the impact of the attention mechanism with and without pretrained backbone networks on the UNet model. For the same, three networks are considered: Attention-UNet, Attention-UNet with resnet50 pretrained backbone and Attention-UNet with densenet121 pretrained backbone. The experiments are performed on the ACDC Challenge 2017 dataset. The performance is evaluated by conducting a comparative analysis based on the Dice Coefficient, IoU Coefficient, and cross-entropy loss calculations. The Attention-UNet, Attention-UNet with resnet50 pretrained backbone, and Attention-UNet with densenet121 pretrained backbone networks obtained Dice Coefficients of 0.9889, 0.9720, and 0.9801, respectively, along with corresponding IoU scores of 0.9781, 0.9457, and 0.9612. Results compared with the state-of-the-art methods indicate that the methods are on par with, or even superior in terms of both the Dice coefficient and Intersection-over-union.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
摆烂昊发布了新的文献求助10
刚刚
闪闪乞完成签到,获得积分10
刚刚
中科院化学完成签到,获得积分20
刚刚
sxx完成签到,获得积分10
刚刚
燕熙完成签到,获得积分10
刚刚
1秒前
李明发布了新的文献求助10
1秒前
Cast_Lappland发布了新的文献求助10
1秒前
悦耳的蜗牛完成签到,获得积分10
1秒前
Blue完成签到 ,获得积分10
1秒前
2秒前
沉静缘分发布了新的文献求助20
2秒前
2秒前
所所应助承欢采纳,获得10
2秒前
LTYYY发布了新的文献求助10
2秒前
hw完成签到 ,获得积分10
3秒前
香蕉觅云应助垣味栗子酱采纳,获得10
3秒前
4秒前
大模型应助玖锱采纳,获得10
4秒前
阿芙乐尔完成签到 ,获得积分10
5秒前
zj完成签到,获得积分10
5秒前
5秒前
5秒前
wanci应助majf采纳,获得10
6秒前
6秒前
mazouri完成签到,获得积分10
6秒前
6秒前
子车茗应助快乐橘子采纳,获得30
7秒前
7秒前
顺顺黎黎发布了新的文献求助20
7秒前
糊涂的老师完成签到,获得积分20
7秒前
Hello应助Sunshine采纳,获得10
8秒前
Criminology34应助明杰采纳,获得10
8秒前
8秒前
Army616发布了新的文献求助10
8秒前
9秒前
9秒前
子车茗应助啦啦小王~采纳,获得30
9秒前
10秒前
10秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587131
求助须知:如何正确求助?哪些是违规求助? 4670288
关于积分的说明 14782246
捐赠科研通 4622203
什么是DOI,文献DOI怎么找? 2531157
邀请新用户注册赠送积分活动 1499937
关于科研通互助平台的介绍 1468024