Attention-UNet architectures with pretrained backbones for multi-class cardiac MR image segmentation

分割 Sørensen–骰子系数 人工智能 掷骰子 深度学习 磁共振成像 计算机科学 模式识别(心理学) 图像分割 医学 放射科 数学 统计
作者
Niharika Das,Sujoy Das
出处
期刊:Current Problems in Cardiology [Elsevier]
卷期号:49 (1): 102129-102129 被引量:2
标识
DOI:10.1016/j.cpcardiol.2023.102129
摘要

Segmentation architectures based on deep learning proficient extraordinary results in medical imaging technologies. Computed tomography (CT) images and Magnetic Resonance Imaging (MRI) in diagnosis and treatment are increasing and significantly support the diagnostic process by removing the bottlenecks of manual segmentation. Cardiac Magnetic Resonance Imaging (CMRI) is a state-of-the-art imaging technique used to acquire vital heart measurements and has received extensive attention from researchers for automatic segmentation. Deep learning methods offer high-precision segmentation but still pose several difficulties, such as pixel homogeneity in nearby organs. The motivated study using the attention mechanism approach was introduced for medical images for automated algorithms. The experiment focuses on observing the impact of the attention mechanism with and without pretrained backbone networks on the UNet model. For the same, three networks are considered: Attention-UNet, Attention-UNet with resnet50 pretrained backbone and Attention-UNet with densenet121 pretrained backbone. The experiments are performed on the ACDC Challenge 2017 dataset. The performance is evaluated by conducting a comparative analysis based on the Dice Coefficient, IoU Coefficient, and cross-entropy loss calculations. The Attention-UNet, Attention-UNet with resnet50 pretrained backbone, and Attention-UNet with densenet121 pretrained backbone networks obtained Dice Coefficients of 0.9889, 0.9720, and 0.9801, respectively, along with corresponding IoU scores of 0.9781, 0.9457, and 0.9612. Results compared with the state-of-the-art methods indicate that the methods are on par with, or even superior in terms of both the Dice coefficient and Intersection-over-union.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
giao完成签到,获得积分10
3秒前
abc完成签到 ,获得积分10
8秒前
ffyzsl完成签到,获得积分10
10秒前
小李叭叭完成签到,获得积分10
18秒前
CHyaa完成签到,获得积分10
20秒前
拉塞尔....完成签到 ,获得积分10
21秒前
strive完成签到 ,获得积分10
23秒前
幽若宝宝完成签到,获得积分10
23秒前
大萱完成签到 ,获得积分10
24秒前
夷陵老祖胃无限完成签到,获得积分10
28秒前
飞竹天寻完成签到,获得积分20
28秒前
阿咚完成签到,获得积分10
30秒前
seedcui完成签到,获得积分10
31秒前
不吃辣活不了完成签到 ,获得积分10
32秒前
嗯哼完成签到,获得积分10
37秒前
38秒前
Liar应助科研通管家采纳,获得10
38秒前
传奇3应助科研通管家采纳,获得10
38秒前
彭于晏应助科研通管家采纳,获得10
38秒前
Clover04应助科研通管家采纳,获得10
38秒前
38秒前
FashionBoy应助科研通管家采纳,获得10
38秒前
Liar应助科研通管家采纳,获得10
38秒前
bkagyin应助科研通管家采纳,获得10
38秒前
大模型应助科研通管家采纳,获得20
38秒前
38秒前
传奇3应助科研通管家采纳,获得10
38秒前
39秒前
嗯哼发布了新的文献求助10
42秒前
bkagyin应助我爱科研研研研采纳,获得10
43秒前
111完成签到,获得积分10
43秒前
和谐的映梦完成签到,获得积分10
45秒前
Tao完成签到 ,获得积分10
46秒前
51秒前
炙热的河马应助嗯哼采纳,获得10
51秒前
minino完成签到 ,获得积分10
52秒前
yuncong323完成签到,获得积分10
53秒前
BAi发布了新的文献求助10
57秒前
57秒前
HUO完成签到 ,获得积分10
59秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139720
求助须知:如何正确求助?哪些是违规求助? 2790623
关于积分的说明 7795870
捐赠科研通 2447082
什么是DOI,文献DOI怎么找? 1301563
科研通“疑难数据库(出版商)”最低求助积分说明 626274
版权声明 601176