脊髓损伤
再生(生物学)
自愈水凝胶
医学
脊髓
纳米医学
药理学
细胞外基质
神经科学
化学
纳米技术
材料科学
生物
细胞生物学
纳米颗粒
有机化学
精神科
生物化学
作者
Peng Yin,Weishi Liang,Bo Han,Yihan Yang,Duan Sun,Xian‐Jun Qu,Yong Hai,Dan Luo
标识
DOI:10.1002/smtd.202301173
摘要
Abstract Spinal cord injury (SCI) is a severe neurodegenerative disease caused by mechanical and biological factors, manifesting as a loss of motor and sensory functions. Inhibition of injury expansion and even reversal of injury in the acute damage stage of SCI are important strategies for treating this disease. Hydrogels and nanoparticle (NP)‐based drugs are the most effective, widely studied, and clinically valuable therapeutic strategies in the field of repair and regeneration. Hydrogels are 3D flow structures that fill the pathological gaps in SCI and provide a microenvironment similar to that of the spinal cord extracellular matrix for nerve cell regeneration. NP‐based drugs can easily penetrate the blood‐spinal cord barrier, target SCI lesions, and are noninvasive. Hydrogels and NPs as drug carriers can be loaded with various drugs and biological therapeutic factors for slow release in SCI lesions. They help drugs function more efficiently by exerting anti‐inflammatory, antioxidant, and nerve regeneration effects to promote the recovery of neurological function. In this review, the use of hydrogels and NPs as drug carriers and the role of both in the repair of SCI are discussed to provide a multimodal strategic reference for nerve repair and regeneration after SCI.
科研通智能强力驱动
Strongly Powered by AbleSci AI