Parameterized Deep Reinforcement Learning With Hybrid Action Space for Edge Task Offloading

计算机科学 强化学习 移动边缘计算 GSM演进的增强数据速率 服务器 任务(项目管理) 分布式计算 参数化复杂度 边缘计算 人工智能 计算机网络 算法 管理 经济
作者
Ting Wang,Yuxiang Deng,Youjian Zhao,Yang Wang,Haibin Cai
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (6): 10754-10767
标识
DOI:10.1109/jiot.2023.3327121
摘要

Multi-access edge computing (MEC) has emerged as a promising solution that can enable low-end terminal devices to run large complex applications by offloading their tasks to edge servers. The task offloading strategy, determining how to offload tasks, remains the most critical issue of MEC. Traditional offloading approaches either suffer from high computational complexity or poor self-adjustability to dynamic changes in the edge environment. Deep reinforcement learning (DRL) provides an effective way to tackle these issues. However, most existing DRL-based methods solely consider either a continuous or a discrete action space, where the limited action space results in accuracy loss and restricts the optimality of offloading decisions. Nevertheless, the edge task offloading problem in practice often confronts both discrete and continuous actions. In this paper, we propose a tailored Proximal Policy Optimization (PPO)-based method, named Hybrid-PPO, enhanced by the parameterized discrete-continuous hybrid action space. Assisted with Hybrid-PPO, we further design a novel DRL-based multi-server multi-task collaborative partial task offloading scheme adhering to a series of specifically built formal models. Experimental results prove that our approach achieves high offloading efficiency and outperforms the existing state-of-the-art offloading schemes in terms of convergence rate, energy cost, time cost, and generalizability under various network conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
航_123发布了新的文献求助10
3秒前
专注刺猬完成签到,获得积分10
4秒前
iiii完成签到,获得积分20
4秒前
好运加持发布了新的文献求助10
5秒前
Xxxxzzz完成签到,获得积分10
6秒前
派大星发布了新的文献求助10
6秒前
APS发布了新的文献求助10
7秒前
djbj2022发布了新的文献求助10
10秒前
15秒前
ljb完成签到,获得积分10
15秒前
大模型应助司徒碧菡采纳,获得10
15秒前
yar应助Yjj采纳,获得10
16秒前
敬老院N号应助Yjj采纳,获得10
17秒前
wanci应助Yjj采纳,获得10
17秒前
敬老院N号应助Yjj采纳,获得10
17秒前
17秒前
fff1发布了新的文献求助10
18秒前
18秒前
18秒前
20秒前
xjbx完成签到,获得积分10
20秒前
曾经厉完成签到,获得积分10
21秒前
letian完成签到,获得积分10
23秒前
23秒前
24秒前
violin发布了新的文献求助30
24秒前
letian发布了新的文献求助10
27秒前
852应助极光采纳,获得10
27秒前
wzh19940205完成签到,获得积分10
27秒前
29秒前
倒背如流圆周率完成签到,获得积分10
30秒前
Misty完成签到 ,获得积分10
30秒前
violin完成签到,获得积分10
31秒前
啦啦鱼完成签到 ,获得积分10
34秒前
fff1完成签到,获得积分10
34秒前
华仔应助绵绵的探险家采纳,获得10
35秒前
36秒前
38秒前
40秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 930
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3266206
求助须知:如何正确求助?哪些是违规求助? 2906003
关于积分的说明 8336431
捐赠科研通 2576383
什么是DOI,文献DOI怎么找? 1400493
科研通“疑难数据库(出版商)”最低求助积分说明 654786
邀请新用户注册赠送积分活动 633661