重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Parameterized Deep Reinforcement Learning With Hybrid Action Space for Edge Task Offloading

计算机科学 强化学习 移动边缘计算 GSM演进的增强数据速率 服务器 任务(项目管理) 分布式计算 参数化复杂度 边缘计算 人工智能 计算机网络 算法 管理 经济
作者
Ting Wang,Yuxiang Deng,Yang Zhao,Yang Wang,Haibin Cai
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (6): 10754-10767 被引量:18
标识
DOI:10.1109/jiot.2023.3327121
摘要

Multi-access edge computing (MEC) has emerged as a promising solution that can enable low-end terminal devices to run large complex applications by offloading their tasks to edge servers. The task offloading strategy, determining how to offload tasks, remains the most critical issue of MEC. Traditional offloading approaches either suffer from high computational complexity or poor self-adjustability to dynamic changes in the edge environment. Deep reinforcement learning (DRL) provides an effective way to tackle these issues. However, most existing DRL-based methods solely consider either a continuous or a discrete action space, where the limited action space results in accuracy loss and restricts the optimality of offloading decisions. Nevertheless, the edge task offloading problem in practice often confronts both discrete and continuous actions. In this paper, we propose a tailored Proximal Policy Optimization (PPO)-based method, named Hybrid-PPO, enhanced by the parameterized discrete-continuous hybrid action space. Assisted with Hybrid-PPO, we further design a novel DRL-based multi-server multi-task collaborative partial task offloading scheme adhering to a series of specifically built formal models. Experimental results prove that our approach achieves high offloading efficiency and outperforms the existing state-of-the-art offloading schemes in terms of convergence rate, energy cost, time cost, and generalizability under various network conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蛋卷完成签到,获得积分10
1秒前
斯文败类应助cup采纳,获得10
1秒前
1秒前
1秒前
阿海的完成签到,获得积分10
1秒前
2秒前
儒雅的兔子完成签到,获得积分10
2秒前
搜集达人应助长情智宸采纳,获得10
2秒前
zeng5288完成签到,获得积分10
2秒前
3秒前
甜美战斗机完成签到,获得积分20
3秒前
3秒前
3秒前
3秒前
田様应助sfdghik采纳,获得10
3秒前
酷波er应助布医采纳,获得10
3秒前
贪玩草丛发布了新的文献求助10
4秒前
bjyx完成签到 ,获得积分10
4秒前
慕青应助Lion采纳,获得10
4秒前
小小阿杰完成签到,获得积分10
4秒前
威武的友菱完成签到,获得积分10
4秒前
魔幻擎宇发布了新的文献求助10
5秒前
丘比特应助月光入梦采纳,获得10
5秒前
5秒前
Winnie完成签到,获得积分10
5秒前
希望天下0贩的0应助Doc_d采纳,获得10
6秒前
6秒前
6秒前
三世完成签到 ,获得积分10
7秒前
7秒前
达达完成签到,获得积分10
7秒前
赘婿应助yuhan采纳,获得10
8秒前
8秒前
乐乐应助何松采纳,获得10
8秒前
stella完成签到 ,获得积分10
8秒前
Akim应助勤奋的凌翠采纳,获得10
9秒前
科研通AI6应助标致金毛采纳,获得10
9秒前
猪嗝铁铁发布了新的文献求助20
9秒前
科研通AI6应助乔安娜采纳,获得30
9秒前
伶俐绿柏完成签到 ,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466271
求助须知:如何正确求助?哪些是违规求助? 4570197
关于积分的说明 14323735
捐赠科研通 4496698
什么是DOI,文献DOI怎么找? 2463500
邀请新用户注册赠送积分活动 1452381
关于科研通互助平台的介绍 1427516