A Transformer-Based Knowledge Distillation Network for Cortical Cataract Grading

计算机科学 人工智能 变压器 缺少数据 分级(工程) 分类器(UML) 模态(人机交互) 深度学习 机器学习 模式识别(心理学) 数据挖掘 物理 土木工程 量子力学 电压 工程类
作者
Jinhong Wang,Zhe Xu,Wenhao Zheng,Haochao Ying,Tingting Chen,Zuozhu Liu,Danny Z. Chen,Ke Yao,Jian Wu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (3): 1089-1101 被引量:1
标识
DOI:10.1109/tmi.2023.3327274
摘要

Cortical cataract, a common type of cataract, is particularly difficult to be diagnosed automatically due to the complex features of the lesions. Recently, many methods based on edge detection or deep learning were proposed for automatic cataract grading. However, these methods suffer a large performance drop in cortical cataract grading due to the more complex cortical opacities and uncertain data. In this paper, we propose a novel Transformer-based Knowledge Distillation Network, called TKD-Net, for cortical cataract grading. To tackle the complex opacity problem, we first devise a zone decomposition strategy to extract more refined features and introduce special sub-scores to consider critical factors of clinical cortical opacity assessment (location, area, density) for comprehensive quantification. Next, we develop a multi-modal mix-attention Transformer to efficiently fuse sub-scores and image modality for complex feature learning. However, obtaining the sub-score modality is a challenge in the clinic, which could cause the modality missing problem instead. To simultaneously alleviate the issues of modality missing and uncertain data, we further design a Transformer-based knowledge distillation method, which uses a teacher model with perfect data to guide a student model with modality-missing and uncertain data. We conduct extensive experiments on a dataset of commonly-used slit-lamp images annotated by the LOCS III grading system to demonstrate that our TKD-Net outperforms state-of-the-art methods, as well as the effectiveness of its key components. Codes are available at https://github.com/wjh892521292/Cataract_TKD-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
20010完成签到,获得积分10
刚刚
SixDogs发布了新的文献求助13
1秒前
1秒前
搞笑地雷完成签到 ,获得积分10
1秒前
11完成签到,获得积分10
2秒前
贺格平发布了新的文献求助10
2秒前
小董完成签到,获得积分20
5秒前
BENpao123发布了新的文献求助10
5秒前
所所应助无问西东采纳,获得10
6秒前
6秒前
7秒前
bombing2048完成签到 ,获得积分10
8秒前
Hello应助谦让寄容采纳,获得10
8秒前
香蕉觅云应助Wenyilong采纳,获得10
8秒前
10秒前
lml发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
刻苦秋尽完成签到,获得积分20
11秒前
空白发布了新的文献求助10
11秒前
justin完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
科研通AI6应助lex采纳,获得10
13秒前
14秒前
Darius发布了新的文献求助10
15秒前
15秒前
CodeCraft应助现代芷波采纳,获得10
15秒前
15秒前
YH发布了新的文献求助10
16秒前
sdf完成签到,获得积分20
18秒前
无问西东发布了新的文献求助10
18秒前
18秒前
lrz发布了新的文献求助10
18秒前
小芒果完成签到,获得积分10
19秒前
20秒前
瘦瘦彩虹完成签到,获得积分10
20秒前
Chiwen发布了新的文献求助10
20秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5342574
求助须知:如何正确求助?哪些是违规求助? 4478451
关于积分的说明 13939383
捐赠科研通 4375015
什么是DOI,文献DOI怎么找? 2403911
邀请新用户注册赠送积分活动 1396509
关于科研通互助平台的介绍 1368648