A Transformer-Based Knowledge Distillation Network for Cortical Cataract Grading

计算机科学 人工智能 变压器 缺少数据 分级(工程) 分类器(UML) 模态(人机交互) 深度学习 机器学习 模式识别(心理学) 数据挖掘 量子力学 物理 工程类 土木工程 电压
作者
Jinhong Wang,Zhe Xu,Wenhao Zheng,Haochao Ying,Tingting Chen,Zuozhu Liu,Danny Z. Chen,Ke Yao,Jian Wu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (3): 1089-1101 被引量:1
标识
DOI:10.1109/tmi.2023.3327274
摘要

Cortical cataract, a common type of cataract, is particularly difficult to be diagnosed automatically due to the complex features of the lesions. Recently, many methods based on edge detection or deep learning were proposed for automatic cataract grading. However, these methods suffer a large performance drop in cortical cataract grading due to the more complex cortical opacities and uncertain data. In this paper, we propose a novel Transformer-based Knowledge Distillation Network, called TKD-Net, for cortical cataract grading. To tackle the complex opacity problem, we first devise a zone decomposition strategy to extract more refined features and introduce special sub-scores to consider critical factors of clinical cortical opacity assessment (location, area, density) for comprehensive quantification. Next, we develop a multi-modal mix-attention Transformer to efficiently fuse sub-scores and image modality for complex feature learning. However, obtaining the sub-score modality is a challenge in the clinic, which could cause the modality missing problem instead. To simultaneously alleviate the issues of modality missing and uncertain data, we further design a Transformer-based knowledge distillation method, which uses a teacher model with perfect data to guide a student model with modality-missing and uncertain data. We conduct extensive experiments on a dataset of commonly-used slit-lamp images annotated by the LOCS III grading system to demonstrate that our TKD-Net outperforms state-of-the-art methods, as well as the effectiveness of its key components. Codes are available at https://github.com/wjh892521292/Cataract_TKD-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
请叫我风吹麦浪应助璿_采纳,获得10
刚刚
Fern发布了新的文献求助10
刚刚
1秒前
西大摆烂狗关注了科研通微信公众号
1秒前
Jasper应助量无他采纳,获得10
1秒前
FashionBoy应助独摇之采纳,获得10
2秒前
2秒前
Sindyyyyyy完成签到,获得积分10
2秒前
3秒前
迷人的月饼完成签到,获得积分10
3秒前
wangkeke完成签到,获得积分10
3秒前
zsc2324发布了新的文献求助30
3秒前
张老汉完成签到,获得积分10
3秒前
4秒前
5秒前
闲听花落发布了新的文献求助10
5秒前
5秒前
勾陈一完成签到,获得积分10
6秒前
6秒前
Akim应助月月鸟采纳,获得10
7秒前
unique发布了新的文献求助10
7秒前
小章鱼发布了新的文献求助10
7秒前
佳佳佳佳佳关注了科研通微信公众号
8秒前
wangkeke发布了新的文献求助10
8秒前
周周发布了新的文献求助10
8秒前
bkagyin应助tsytwn采纳,获得10
9秒前
研友_8DAv0L发布了新的文献求助10
10秒前
10秒前
10秒前
xolen发布了新的文献求助10
11秒前
NL发布了新的文献求助10
11秒前
粗暴的橘子完成签到,获得积分10
11秒前
小二郎应助unique采纳,获得10
12秒前
12秒前
蛋卷完成签到,获得积分10
13秒前
Ava应助半生瓜采纳,获得10
13秒前
14秒前
简单应助黄建林采纳,获得10
14秒前
星辰大海应助周周采纳,获得10
14秒前
15秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3476842
求助须知:如何正确求助?哪些是违规求助? 3068424
关于积分的说明 9107761
捐赠科研通 2759834
什么是DOI,文献DOI怎么找? 1514308
邀请新用户注册赠送积分活动 700220
科研通“疑难数据库(出版商)”最低求助积分说明 699399