亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Transformer-Based Knowledge Distillation Network for Cortical Cataract Grading

计算机科学 人工智能 变压器 缺少数据 分级(工程) 分类器(UML) 模态(人机交互) 深度学习 机器学习 模式识别(心理学) 数据挖掘 物理 土木工程 量子力学 电压 工程类
作者
Jinhong Wang,Zhe Xu,Wenhao Zheng,Haochao Ying,Tingting Chen,Zuozhu Liu,Danny Z. Chen,Ke Yao,Jian Wu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (3): 1089-1101 被引量:1
标识
DOI:10.1109/tmi.2023.3327274
摘要

Cortical cataract, a common type of cataract, is particularly difficult to be diagnosed automatically due to the complex features of the lesions. Recently, many methods based on edge detection or deep learning were proposed for automatic cataract grading. However, these methods suffer a large performance drop in cortical cataract grading due to the more complex cortical opacities and uncertain data. In this paper, we propose a novel Transformer-based Knowledge Distillation Network, called TKD-Net, for cortical cataract grading. To tackle the complex opacity problem, we first devise a zone decomposition strategy to extract more refined features and introduce special sub-scores to consider critical factors of clinical cortical opacity assessment (location, area, density) for comprehensive quantification. Next, we develop a multi-modal mix-attention Transformer to efficiently fuse sub-scores and image modality for complex feature learning. However, obtaining the sub-score modality is a challenge in the clinic, which could cause the modality missing problem instead. To simultaneously alleviate the issues of modality missing and uncertain data, we further design a Transformer-based knowledge distillation method, which uses a teacher model with perfect data to guide a student model with modality-missing and uncertain data. We conduct extensive experiments on a dataset of commonly-used slit-lamp images annotated by the LOCS III grading system to demonstrate that our TKD-Net outperforms state-of-the-art methods, as well as the effectiveness of its key components. Codes are available at https://github.com/wjh892521292/Cataract_TKD-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
pentjy完成签到,获得积分10
4秒前
Focus发布了新的文献求助10
4秒前
勤恳的不悔完成签到,获得积分10
7秒前
8秒前
cat发布了新的文献求助50
9秒前
酷波er应助pentjy采纳,获得10
11秒前
12秒前
优秀藏鸟完成签到 ,获得积分10
14秒前
16秒前
17秒前
落后凝莲发布了新的文献求助10
20秒前
pentjy发布了新的文献求助10
21秒前
江月年发布了新的文献求助10
25秒前
25秒前
su完成签到 ,获得积分10
28秒前
落后凝莲完成签到,获得积分10
33秒前
追逐123完成签到 ,获得积分10
34秒前
江月年完成签到,获得积分10
36秒前
ding应助ST采纳,获得10
39秒前
属实有点拉胯完成签到 ,获得积分10
40秒前
46秒前
51秒前
许三问完成签到 ,获得积分0
51秒前
ST发布了新的文献求助10
51秒前
一一同学发布了新的文献求助30
54秒前
白小超人完成签到 ,获得积分10
58秒前
li发布了新的文献求助10
58秒前
MCRing完成签到,获得积分10
1分钟前
学术小白完成签到,获得积分10
1分钟前
科研通AI5应助满意的世界采纳,获得50
1分钟前
hahhhah完成签到 ,获得积分10
1分钟前
song完成签到 ,获得积分10
1分钟前
开心绫发布了新的文献求助10
1分钟前
Wind0240完成签到,获得积分10
1分钟前
Hung完成签到,获得积分10
1分钟前
一一同学完成签到,获得积分10
1分钟前
1分钟前
HY完成签到 ,获得积分10
1分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965562
求助须知:如何正确求助?哪些是违规求助? 3510843
关于积分的说明 11155315
捐赠科研通 3245323
什么是DOI,文献DOI怎么找? 1792808
邀请新用户注册赠送积分活动 874110
科研通“疑难数据库(出版商)”最低求助积分说明 804176