亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Optimized variable selection and machine learning models for olive oil quality assessment using portable near infrared spectroscopy

偏最小二乘回归 橄榄油 质量(理念) 均方误差 化学计量学 统计 数学 特征选择 环境科学 计算机科学 化学 人工智能 机器学习 食品科学 哲学 认识论
作者
Reda Rabie,Taoufiq Saffaj,Ilham Bouzida,Ouadi Saidi,Malika Belgrir,Brahim Lakssir,El Mestafa El Hadrami
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:303: 123213-123213 被引量:1
标识
DOI:10.1016/j.saa.2023.123213
摘要

Olive oil is a key component of the Mediterranean diet, rich in antioxidants and beneficial monounsaturated fatty acids. As a result, high-quality olive oil is in great demand, with its price varying depending on its quality. Traditional chemical tests for assessing olive oil quality are expensive and time-consuming. To address these limitations, this study explores the use of near infrared spectroscopy (NIRS) in predicting key quality parameters of olive oil, including acidity, K232, and K270. To this end, a set of 200 olive oil samples was collected from various agricultural regions of Morocco, covering all three quality categories (extra virgin, virgin, and ordinary virgin). The findings of this study have implications for reducing analysis time and costs associated with olive oil quality assessment. To predict olive oil quality parameters, chemical analysis was conducted in accordance with international standards, while the spectra were obtained using a portable NIR spectrometer. Partial least squares regression (PLSR) was employed along with various variable selection algorithms to establish the relationship between wavelengths and chemical data in order to accurately predict the quality parameters. Through this approach, the study aimed to enhance the efficiency and accuracy of olive oil quality assessment. The obtained results show that NIRS combined with machine learning accurately predicted the acidity using iPLS methods for variable selection, it generates a PLSR with coefficients of determination R2 = 0.94, root mean square error RMSE = 0.32 and ratios of standard error of performance to standard deviation RPD = 4.2 for the validation set. Also, the use of variable selection methods improves the quality of the prediction. For K232 and K270 the NIRS shows moderate prediction performance, it gave an R2 between 0.60 and 0.75. Generally, the results showed that it was possible to predict acidity K232, and K270 parameters with excellent to moderate accuracy for the two last parameters. Moreover, it was also possible to distinguish between different quality groups of olive oil using the principal component analysis PCA, and the use of variable selection helps to use the useful wavelength for the prediction olive oil using a portable NIR spectrometer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王亚茹完成签到 ,获得积分10
12秒前
13秒前
picapica668发布了新的文献求助10
17秒前
天天快乐应助阿文采纳,获得10
17秒前
上官若男应助小骆采纳,获得10
22秒前
李大姐完成签到,获得积分20
29秒前
Chris完成签到 ,获得积分0
38秒前
39秒前
郝富发布了新的文献求助10
42秒前
小骆发布了新的文献求助10
43秒前
天天快乐应助picapica668采纳,获得10
44秒前
林狗完成签到 ,获得积分10
45秒前
46秒前
kelesss完成签到,获得积分10
47秒前
8R60d8应助李大姐采纳,获得10
54秒前
55秒前
56秒前
天妒嘤才发布了新的文献求助10
1分钟前
北极星发布了新的文献求助30
1分钟前
1分钟前
一二完成签到 ,获得积分10
1分钟前
1分钟前
情怀应助北极星采纳,获得30
1分钟前
汉堡包应助天妒嘤才采纳,获得10
1分钟前
1分钟前
1分钟前
Xiao风啊发布了新的文献求助10
1分钟前
淡然野狼发布了新的文献求助10
1分钟前
孜然味的拜拜肉完成签到,获得积分10
1分钟前
传奇3应助快乐的C采纳,获得10
1分钟前
Xiao风啊完成签到,获得积分10
1分钟前
sss完成签到,获得积分10
1分钟前
一二三完成签到 ,获得积分10
1分钟前
sss发布了新的文献求助30
1分钟前
慕青应助科研通管家采纳,获得10
1分钟前
慕青应助科研通管家采纳,获得30
1分钟前
NexusExplorer应助科研通管家采纳,获得10
1分钟前
1分钟前
2分钟前
帅气的沧海完成签到 ,获得积分10
2分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139515
求助须知:如何正确求助?哪些是违规求助? 2790418
关于积分的说明 7795156
捐赠科研通 2446832
什么是DOI,文献DOI怎么找? 1301450
科研通“疑难数据库(出版商)”最低求助积分说明 626238
版权声明 601146