Optimized variable selection and machine learning models for olive oil quality assessment using portable near infrared spectroscopy

偏最小二乘回归 橄榄油 质量(理念) 均方误差 化学计量学 统计 数学 特征选择 环境科学 计算机科学 化学 人工智能 机器学习 食品科学 哲学 认识论
作者
Reda Rabie,Taoufiq Saffaj,Ilham Bouzida,Ouadi Saidi,Malika Belgrir,Brahim Lakssir,El Mestafa El Hadrami
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:303: 123213-123213 被引量:1
标识
DOI:10.1016/j.saa.2023.123213
摘要

Olive oil is a key component of the Mediterranean diet, rich in antioxidants and beneficial monounsaturated fatty acids. As a result, high-quality olive oil is in great demand, with its price varying depending on its quality. Traditional chemical tests for assessing olive oil quality are expensive and time-consuming. To address these limitations, this study explores the use of near infrared spectroscopy (NIRS) in predicting key quality parameters of olive oil, including acidity, K232, and K270. To this end, a set of 200 olive oil samples was collected from various agricultural regions of Morocco, covering all three quality categories (extra virgin, virgin, and ordinary virgin). The findings of this study have implications for reducing analysis time and costs associated with olive oil quality assessment. To predict olive oil quality parameters, chemical analysis was conducted in accordance with international standards, while the spectra were obtained using a portable NIR spectrometer. Partial least squares regression (PLSR) was employed along with various variable selection algorithms to establish the relationship between wavelengths and chemical data in order to accurately predict the quality parameters. Through this approach, the study aimed to enhance the efficiency and accuracy of olive oil quality assessment. The obtained results show that NIRS combined with machine learning accurately predicted the acidity using iPLS methods for variable selection, it generates a PLSR with coefficients of determination R2 = 0.94, root mean square error RMSE = 0.32 and ratios of standard error of performance to standard deviation RPD = 4.2 for the validation set. Also, the use of variable selection methods improves the quality of the prediction. For K232 and K270 the NIRS shows moderate prediction performance, it gave an R2 between 0.60 and 0.75. Generally, the results showed that it was possible to predict acidity K232, and K270 parameters with excellent to moderate accuracy for the two last parameters. Moreover, it was also possible to distinguish between different quality groups of olive oil using the principal component analysis PCA, and the use of variable selection helps to use the useful wavelength for the prediction olive oil using a portable NIR spectrometer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助淡淡夕阳采纳,获得10
刚刚
汉堡包应助收手吧大哥采纳,获得10
2秒前
sylnd126发布了新的文献求助10
2秒前
2秒前
lemon完成签到,获得积分10
2秒前
小烦同学完成签到,获得积分10
3秒前
SYLH应助橙子采纳,获得20
4秒前
我是鸡汤发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
5秒前
6秒前
6秒前
科研助手6应助能干的吐司采纳,获得10
6秒前
7秒前
CipherSage应助123采纳,获得10
7秒前
7秒前
谦让之云发布了新的文献求助10
8秒前
嗯哼发布了新的文献求助10
8秒前
小蘑菇应助明亮飞双采纳,获得10
9秒前
why发布了新的文献求助10
9秒前
粥粥完成签到 ,获得积分10
9秒前
郭小宝发布了新的文献求助10
9秒前
10秒前
11秒前
白日梦完成签到,获得积分20
11秒前
11秒前
大模型应助张张张采纳,获得10
11秒前
ding应助亭亭1234采纳,获得10
12秒前
12秒前
13秒前
13秒前
14秒前
善学以致用应助苏利文采纳,获得30
15秒前
15秒前
15秒前
xmj完成签到,获得积分10
15秒前
16秒前
aaaaa发布了新的文献求助10
17秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988786
求助须知:如何正确求助?哪些是违规求助? 3531116
关于积分的说明 11252493
捐赠科研通 3269766
什么是DOI,文献DOI怎么找? 1804771
邀请新用户注册赠送积分活动 881870
科研通“疑难数据库(出版商)”最低求助积分说明 809021