Optimized variable selection and machine learning models for olive oil quality assessment using portable near infrared spectroscopy

偏最小二乘回归 橄榄油 质量(理念) 均方误差 化学计量学 统计 数学 特征选择 环境科学 计算机科学 化学 人工智能 机器学习 食品科学 哲学 认识论
作者
Reda Rabie,Taoufiq Saffaj,Ilham Bouzida,Ouadi Saidi,Malika Belgrir,Brahim Lakssir,El Mestafa El Hadrami
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:303: 123213-123213 被引量:1
标识
DOI:10.1016/j.saa.2023.123213
摘要

Olive oil is a key component of the Mediterranean diet, rich in antioxidants and beneficial monounsaturated fatty acids. As a result, high-quality olive oil is in great demand, with its price varying depending on its quality. Traditional chemical tests for assessing olive oil quality are expensive and time-consuming. To address these limitations, this study explores the use of near infrared spectroscopy (NIRS) in predicting key quality parameters of olive oil, including acidity, K232, and K270. To this end, a set of 200 olive oil samples was collected from various agricultural regions of Morocco, covering all three quality categories (extra virgin, virgin, and ordinary virgin). The findings of this study have implications for reducing analysis time and costs associated with olive oil quality assessment. To predict olive oil quality parameters, chemical analysis was conducted in accordance with international standards, while the spectra were obtained using a portable NIR spectrometer. Partial least squares regression (PLSR) was employed along with various variable selection algorithms to establish the relationship between wavelengths and chemical data in order to accurately predict the quality parameters. Through this approach, the study aimed to enhance the efficiency and accuracy of olive oil quality assessment. The obtained results show that NIRS combined with machine learning accurately predicted the acidity using iPLS methods for variable selection, it generates a PLSR with coefficients of determination R2 = 0.94, root mean square error RMSE = 0.32 and ratios of standard error of performance to standard deviation RPD = 4.2 for the validation set. Also, the use of variable selection methods improves the quality of the prediction. For K232 and K270 the NIRS shows moderate prediction performance, it gave an R2 between 0.60 and 0.75. Generally, the results showed that it was possible to predict acidity K232, and K270 parameters with excellent to moderate accuracy for the two last parameters. Moreover, it was also possible to distinguish between different quality groups of olive oil using the principal component analysis PCA, and the use of variable selection helps to use the useful wavelength for the prediction olive oil using a portable NIR spectrometer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
是谁还没睡完成签到 ,获得积分10
2秒前
盘尼西林发布了新的文献求助10
6秒前
zzz完成签到 ,获得积分10
8秒前
dktrrrr完成签到,获得积分10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
丘比特应助科研通管家采纳,获得20
10秒前
10秒前
ccc完成签到,获得积分10
15秒前
萧秋灵完成签到,获得积分10
16秒前
缓慢冥幽完成签到,获得积分10
16秒前
旺仔同学完成签到,获得积分10
25秒前
吉以寒完成签到,获得积分10
31秒前
科研老兵完成签到,获得积分10
33秒前
量子星尘发布了新的文献求助10
36秒前
fys131415完成签到 ,获得积分10
51秒前
执着的忆雪完成签到 ,获得积分10
54秒前
56秒前
闵不悔完成签到,获得积分10
1分钟前
阳光火车完成签到 ,获得积分10
1分钟前
cc完成签到,获得积分10
1分钟前
合适的寄灵完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
科研通AI5应助cc采纳,获得10
1分钟前
铜泰妍完成签到 ,获得积分10
1分钟前
贝贝完成签到 ,获得积分10
1分钟前
Lrcx完成签到 ,获得积分10
1分钟前
Wen完成签到 ,获得积分10
1分钟前
盘尼西林完成签到 ,获得积分10
1分钟前
LOVE0077完成签到,获得积分10
1分钟前
zhao完成签到,获得积分10
1分钟前
BINBIN完成签到 ,获得积分10
1分钟前
ambrose37完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
fufufu123完成签到 ,获得积分10
1分钟前
开心的大娘完成签到,获得积分10
1分钟前
www完成签到 ,获得积分10
1分钟前
末末完成签到 ,获得积分10
2分钟前
无为完成签到 ,获得积分10
2分钟前
白嫖论文完成签到 ,获得积分10
2分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038039
求助须知:如何正确求助?哪些是违规求助? 3575756
关于积分的说明 11373782
捐赠科研通 3305574
什么是DOI,文献DOI怎么找? 1819239
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022