亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Optimized variable selection and machine learning models for olive oil quality assessment using portable near infrared spectroscopy

偏最小二乘回归 橄榄油 质量(理念) 均方误差 化学计量学 统计 数学 特征选择 环境科学 计算机科学 化学 人工智能 机器学习 食品科学 哲学 认识论
作者
Reda Rabie,Taoufiq Saffaj,Ilham Bouzida,Ouadi Saidi,Malika Belgrir,Brahim Lakssir,El Mestafa El Hadrami
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:303: 123213-123213 被引量:1
标识
DOI:10.1016/j.saa.2023.123213
摘要

Olive oil is a key component of the Mediterranean diet, rich in antioxidants and beneficial monounsaturated fatty acids. As a result, high-quality olive oil is in great demand, with its price varying depending on its quality. Traditional chemical tests for assessing olive oil quality are expensive and time-consuming. To address these limitations, this study explores the use of near infrared spectroscopy (NIRS) in predicting key quality parameters of olive oil, including acidity, K232, and K270. To this end, a set of 200 olive oil samples was collected from various agricultural regions of Morocco, covering all three quality categories (extra virgin, virgin, and ordinary virgin). The findings of this study have implications for reducing analysis time and costs associated with olive oil quality assessment. To predict olive oil quality parameters, chemical analysis was conducted in accordance with international standards, while the spectra were obtained using a portable NIR spectrometer. Partial least squares regression (PLSR) was employed along with various variable selection algorithms to establish the relationship between wavelengths and chemical data in order to accurately predict the quality parameters. Through this approach, the study aimed to enhance the efficiency and accuracy of olive oil quality assessment. The obtained results show that NIRS combined with machine learning accurately predicted the acidity using iPLS methods for variable selection, it generates a PLSR with coefficients of determination R2 = 0.94, root mean square error RMSE = 0.32 and ratios of standard error of performance to standard deviation RPD = 4.2 for the validation set. Also, the use of variable selection methods improves the quality of the prediction. For K232 and K270 the NIRS shows moderate prediction performance, it gave an R2 between 0.60 and 0.75. Generally, the results showed that it was possible to predict acidity K232, and K270 parameters with excellent to moderate accuracy for the two last parameters. Moreover, it was also possible to distinguish between different quality groups of olive oil using the principal component analysis PCA, and the use of variable selection helps to use the useful wavelength for the prediction olive oil using a portable NIR spectrometer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
konosuba完成签到,获得积分0
15秒前
蜡笔小新完成签到,获得积分10
16秒前
米奇妙妙屋完成签到,获得积分10
19秒前
21秒前
蜡笔小新发布了新的文献求助10
25秒前
bkagyin应助小宝采纳,获得10
47秒前
wanci应助aoxianghuang采纳,获得10
48秒前
快飞飞完成签到 ,获得积分10
52秒前
52秒前
峰妹完成签到 ,获得积分10
56秒前
56秒前
小宝发布了新的文献求助10
58秒前
量子星尘发布了新的文献求助10
1分钟前
aoxianghuang发布了新的文献求助10
1分钟前
1分钟前
无端发布了新的文献求助10
1分钟前
1分钟前
李爱国应助无端采纳,获得10
1分钟前
kk发布了新的文献求助10
1分钟前
ffff完成签到 ,获得积分10
1分钟前
在水一方应助kk采纳,获得10
1分钟前
zzr完成签到,获得积分20
1分钟前
1分钟前
Jasper应助科研通管家采纳,获得10
1分钟前
李浩溪发布了新的文献求助10
1分钟前
caca完成签到,获得积分0
1分钟前
酷波er应助zzr采纳,获得30
2分钟前
大模型应助酷炫小馒头采纳,获得10
2分钟前
大道希言完成签到,获得积分10
2分钟前
TheGan完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
3分钟前
jimmy_bytheway完成签到,获得积分0
3分钟前
3分钟前
无端发布了新的文献求助10
3分钟前
3分钟前
3分钟前
morena应助科研通管家采纳,获得30
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
translating meaning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4917978
求助须知:如何正确求助?哪些是违规求助? 4190833
关于积分的说明 13015373
捐赠科研通 3960469
什么是DOI,文献DOI怎么找? 2171288
邀请新用户注册赠送积分活动 1189333
关于科研通互助平台的介绍 1097557