Mapping high-resolution energy consumption CO2 emissions in China by integrating nighttime lights and point source locations

环境科学 温室气体 能源消耗 遥感 气象学 人口 卫星 可再生能源 排放清单 网格 地理 空气质量指数 工程类 生态学 人口学 大地测量学 航空航天工程 社会学 电气工程 生物
作者
Mengdi Wang,Rong Li,Meigen Zhang,Yukui Zhang,Fan Zhang,Congwu Huang
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:900: 165829-165829 被引量:6
标识
DOI:10.1016/j.scitotenv.2023.165829
摘要

High-resolution CO2 emission inventories are essential to accurately assess spatiotemporal patterns of carbon emissions, analyze factors affecting carbon emissions, and develop sound emission reduction policies. The top-down approach is often used to map CO2 emissions from energy consumption due to its simplicity. However, the spatial proxy variables commonly used in this method, such as nighttime light (NL), land use, and population, are difficult to reflect the spatial distribution of CO2 emissions from large point sources. Therefore, this study uses the active fire product provided by Visible Infrared Imaging Radiometer Suite (VIIRS) sensors on Suomi National Polar-Orbiting Partnership (Suomi-NPP) satellite to extract the location of industrial heat sources in China, and then develops an improved CO2 emission estimation model by integrating industrial heat sources, Global Energy Monitor (GEM) power plant location and nighttime lights. The model is used to map CO2 emissions from energy consumption at a resolution of 1 km*1 km from 2012 to 2019 in China. It is found that the overall accuracy of the model is greatly improved at the provincial level, the R2 value is >0.75, and RMSE is distributed in 40-110 Mt. At the grid level, the improved model allocates more carbon emissions to the grid where the point source is located, which makes the spatial distribution of CO2 emissions more reasonable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一粟的粉r完成签到 ,获得积分10
1秒前
1秒前
SAODEN完成签到,获得积分10
1秒前
栾栾栾完成签到,获得积分10
1秒前
小灰灰完成签到,获得积分0
1秒前
WELXCNK完成签到,获得积分0
1秒前
2秒前
脑洞疼应助Aipoi采纳,获得10
3秒前
落雪慕卿颜完成签到,获得积分10
4秒前
哈哈哈哈完成签到,获得积分10
4秒前
英吉利25发布了新的文献求助10
6秒前
研友_Z7mYwL完成签到,获得积分0
7秒前
阜睿发布了新的文献求助10
7秒前
在水一方应助邵翎365采纳,获得10
8秒前
HY完成签到,获得积分10
9秒前
长江完成签到,获得积分10
9秒前
Zengyuan完成签到,获得积分10
10秒前
风中冰香应助科研通管家采纳,获得10
12秒前
丘比特应助科研通管家采纳,获得10
12秒前
Owen应助科研通管家采纳,获得10
12秒前
在水一方应助科研通管家采纳,获得10
12秒前
Ava应助科研通管家采纳,获得10
12秒前
那时花开应助科研通管家采纳,获得10
12秒前
科目三应助科研通管家采纳,获得10
12秒前
慕青应助科研通管家采纳,获得10
12秒前
lq完成签到,获得积分10
12秒前
13秒前
风中冰香应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
FashionBoy应助科研通管家采纳,获得10
13秒前
SciGPT应助科研通管家采纳,获得30
13秒前
JamesPei应助科研通管家采纳,获得10
13秒前
13秒前
彭于晏应助科研通管家采纳,获得10
13秒前
隐形曼青应助科研通管家采纳,获得10
13秒前
领导范儿应助科研通管家采纳,获得10
13秒前
chrisio应助科研通管家采纳,获得10
13秒前
rabpig应助科研通管家采纳,获得10
13秒前
Sun_1完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5294370
求助须知:如何正确求助?哪些是违规求助? 4444225
关于积分的说明 13832582
捐赠科研通 4328291
什么是DOI,文献DOI怎么找? 2376049
邀请新用户注册赠送积分活动 1371380
关于科研通互助平台的介绍 1336554