清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Non-negative wavelet matrix factorization-based bearing fault intelligent classification method

计算机科学 模式识别(心理学) 人工智能 卷积神经网络 方位(导航) 小波 断层(地质) 离散小波变换 公制(单位) 特征提取 小波变换 机器学习 数据挖掘 工程类 运营管理 地震学 地质学
作者
Zhilin Dong,Dezun Zhao,Lingli Cui
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (11): 115013-115013 被引量:24
标识
DOI:10.1088/1361-6501/aceb0c
摘要

Abstract There are more and more bearing fault types under considering the fault location and degree, and the corresponding fault classification task is becoming increasingly heavy. Raw signals that have not been processed or simply processed are directly input into convolutional neural network (CNN) for classification, resulting in poor classification performance. Aiming at this issue, a time–frequency joint metric feature extraction technique named non-negative wavelet matrix factorization (NWMF) is developed to extract more effective features by comprehensively leveraging the advantages of continuous wavelet transform and non-negative matrix factorization. Based on the NWMF and CNN, an effective intelligent diagnosis framework is constructed to detect bearing fault. In the proposed framework, based on the NWMF, a non-negative basic matrix with smaller size is calculated from the original time–frequency spectrum and it includes bearing fault-related internal core information. In addition, a novel CNN is developed to identify locations and sizes of fault bearing based on the calculated internal core information. For verifying the effectiveness of the proposed framework in handling heavier tasks, the types of bearing faults in the experiments are set up to 15, the results and comparative analysis reveal that the feasibility and superiority of the proposed method are much better than the other traditional machine learning methods and original deep learning methods, such as the support vector machine, random forest and residual neural network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
15秒前
woxinyouyou完成签到,获得积分0
16秒前
27秒前
badgerwithfisher完成签到,获得积分10
38秒前
NexusExplorer应助畅快的海云采纳,获得10
54秒前
畅快的海云完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
inRe发布了新的文献求助10
1分钟前
长情半邪发布了新的文献求助20
1分钟前
绿袖子完成签到,获得积分10
1分钟前
1分钟前
gwbk完成签到,获得积分10
1分钟前
科研通AI2S应助长情半邪采纳,获得10
1分钟前
传奇3应助求你了哥采纳,获得10
2分钟前
huangyi完成签到 ,获得积分10
2分钟前
Polymer72应助长情半邪采纳,获得10
2分钟前
2分钟前
飘逸问薇完成签到 ,获得积分10
2分钟前
2分钟前
求你了哥发布了新的文献求助10
2分钟前
3分钟前
yuntong完成签到 ,获得积分10
3分钟前
3分钟前
求你了哥完成签到,获得积分10
3分钟前
3分钟前
HLT完成签到 ,获得积分10
4分钟前
4分钟前
fireking_sid完成签到,获得积分10
4分钟前
刘天宇完成签到 ,获得积分10
4分钟前
嘿嘿完成签到 ,获得积分10
4分钟前
魔幻的修洁完成签到,获得积分10
4分钟前
4分钟前
4分钟前
姚倩倩发布了新的文献求助10
5分钟前
自信放光芒~完成签到 ,获得积分10
5分钟前
24K纯帅完成签到,获得积分10
5分钟前
5分钟前
5分钟前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Sociocultural theory and the teaching of second languages 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3339038
求助须知:如何正确求助?哪些是违规求助? 2967044
关于积分的说明 8627946
捐赠科研通 2646494
什么是DOI,文献DOI怎么找? 1449239
科研通“疑难数据库(出版商)”最低求助积分说明 671343
邀请新用户注册赠送积分活动 660176