储能
可再生能源
材料科学
背景(考古学)
化石燃料
计算机数据存储
纳米技术
工艺工程
计算机科学
机械工程
工程类
功率(物理)
电气工程
废物管理
物理
热力学
古生物学
操作系统
生物
作者
Luneng Zhao,Yung‐Huang Chang,Shi Qiu,Huan Liu,Jijun Zhao,Junfeng Gao
标识
DOI:10.1002/aesr.202300112
摘要
Energy storage and renewable energy sources are critical for addressing the growing global energy demand and reducing the negative environmental impacts of fossil fuels. Carbon nanomaterials are extensively explored as high reliable, reusable, and high‐density mechanical energy storage materials. In this context, machine learning techniques, specifically machine learning potentials (MLPs), are employed to explore the elastic properties of 1D carbon nanowires (CNWs) as a promising candidate for mechanical energy storage applications. The study focuses on the elastic energy storage properties of these CNWs, utilizing MLPs trained with data from first‐principles molecular dynamics simulations. It is found that these materials exhibit an exceptionally high tensile elastic energy storage capacity, with a maximum storage density ranging from 2262 to 2680 kJ kg −1 . Furthermore, it is discovered that some CNWs exhibit a superior torsional energy storage capacity compared to their tensile energy storage capacity. Overall, this research demonstrates the effectiveness of machine learning‐based computational approaches in accelerating the exploration and optimization of novel materials. It also highlights the potential of CNWs as promising candidates for future energy storage applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI